OSA's Digital Library

Applied Spectroscopy

Applied Spectroscopy

| PUBLISHED BY SAS — AVAILABLE FROM SAS AND OSA

  • Vol. 50, Iss. 4 — Apr. 1, 1996
  • pp: 537–540

Ion-Pair Cationization Process in Liquid Secondary Ion Mass Spectrometry

Krishnan R. Mohan, Michele M. N. Wilson, John Haseltine, and Kenneth L. Busch

Applied Spectroscopy, Vol. 50, Issue 4, pp. 537-540 (1996)


View Full Text Article

Acrobat PDF (378 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

Positive-ion fast atom bombardment (FAB) or liquid secondary ion mass spectra (LSIMS) typically provide the molecular mass of the organic sample M via the presence of a dominant protonated molecule (M+H)+ in the mass spectrum. In addition to the proton transfer reaction, cationization processes result in the formation of ions (M+Met)+, in which the metal is derived from metal salts present in the sample as impurities or purposefully added as promoters to the sample solution. Group I metal salts (lithium, sodium, and potassium salts are popular, but rubidium and cesium salts can also be used) result in cationized ions (M+Li)+, (M+Na)+, and (M+K)+. These ions provide multiple confirmations of the molecular mass M of the sample compound. Cationization reactions (as generalized Lewis acid/base reactions) are encountered not only in FAB and LSIMS but also in other desorption ionization methods of mass spectrometry, including field desorption (FD) mass spectrometry. Traditionally, cationization is considered to be the result of the addition of one singly charged metal ion to the neutral sample molecule. If the initial charge state of the metal ion is that of Met2+ or Met3+, the cationized form of the sample molecule observed in the mass spectrum is usually the singly charged species (M+Met)+, and an electron reduction must have occurred. For incorporation of two metal cations, there is always a concomitant loss of hydrogen to form, as an example, (M+2Met-H)+. Recent studies have re-examined the details of the cationization process. For instance, recent work has shown that when the organic sample molecule contains a nitro substituent, a cationization process can occur to form a singly charged ion that contains two alkali ions, viz., (M+2Met)+. The present work highlights yet another form of the cationization reaction.

Citation
Krishnan R. Mohan, Michele M. N. Wilson, John Haseltine, and Kenneth L. Busch, "Ion-Pair Cationization Process in Liquid Secondary Ion Mass Spectrometry," Appl. Spectrosc. 50, 537-540 (1996)
http://www.opticsinfobase.org/as/abstract.cfm?URI=as-50-4-537


Sort:  Journal  |  Reset

References

References are not available for this paper.

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited