Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 50,
  • Issue 5,
  • pp. 608-613
  • (1996)

Ultraviolet Photodissociation of Gas-Phase Alcohols, Amines, and Nitroalkanes

Not Accessible

Your library or personal account may give you access

Abstract

The 193-nm photochemistry of alcohols, amines, and nitroalkanes in the C<sub>3</sub>–C<sub>6</sub> size range is presented. The photolysis products are photoionized with coherent vacuum ultraviolet radiation and analyzed by time-of-flight mass spectrometry. For alcohols and amines, C–C bond dissociation competes with dissociations involving the heteroatom (C–O, O–H, C–N, N–H). Dissociation of the α(C–C) bond is preferred over other locations. Dissociation of a C–C bond is suppressed when a methyl radical would be produced. This behavior is similar to that observed for other substituted alkanes. Nitroalkanes exhibit both C–N and N–O bond dissociation pathways. Their low bond energies cause a substantial amount of internal energy to be partitioned among the primary photodissociation products. Under collision-free conditions, the alkyl radicals produced from these molecules undergo extensive secondary fragmentation. If the photodissociation step is performed in a free jet expansion, collisional cooling stabilizes the primary products and allows large species, such as intact pentyl and hexyl radicals, to be detected.

PDF Article
More Like This
Gas-phase study of the reactivity of optical coating materials with hydrocarbons by use of a desktop-size extreme-ultraviolet laser

Scott Heinbuch, Feng Dong, Jorge J. Rocca, and Elliot R. Bernstein
J. Opt. Soc. Am. B 25(7) B85-B91 (2008)

Selective Two-Step (STS) Photoionization of Atoms and Photodissociation of Molecules by Laser Radiation

R. V. Ambartzumian and V. S. Letokhov
Appl. Opt. 11(2) 354-358 (1972)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved