Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 50,
  • Issue 6,
  • pp. 715-731
  • (1996)

Investigation of Vapor Condensation in Graphite Furnace Atomic Absorption Spectrometry by the Shadow Spectral Digital Imaging Technique

Not Accessible

Your library or personal account may give you access

Abstract

Condensation of vapors of gold (analyte) and matrices of various chemical modifiers and compounds in graphite furnace atomic absorption spectrometry was investigated by using the shadow spectral digital imaging technique with a charge-coupled device camera. Spatial and temporal nonuniformity in the light scattering was observed, and these effects were attributed to the formation of condensed-phase particles during the processes of high-temperature vaporization and atomization. The materials investigated were Au, MgCl<sub>2</sub>, NaCl, (NH<sub>4</sub>)<sub>2</sub>HPO<sub>4</sub>, La(NO<sub>3</sub>)<sub>3</sub>, and a mixture Pd and Mg(NO<sub>3</sub>)<sub>2</sub>. The nonuniform distributions of the condensed-phase particle clouds were attributed to the gas-flow patterns that developed in the graphite tube furnace during heating, as well as the steep temperature gradients that developed along the longitudinal axis of the end-heated graphite tube of the Massmann-type graphite furnace. Differences observed with fast and slow rates of heating were related to thermal expansion of gas and diffusion effects. Use of either a graphite platform or a low argon purge gas flow during the high-temperature heating of the graphite furnace was found to reduce condensation of matrix vapor and to improve accuracy of continuum source background correction.

PDF Article
More Like This
Hot Tube Atomic Absorption Spectrochemistry

Ray Woodriff and Ronald W. Stone
Appl. Opt. 7(7) 1337-1339 (1968)

A Modified King Furnace for Absorption Spectroscopy of Small Samples

F. S. Tomkins and B. Ercoli
Appl. Opt. 6(8) 1299-1303 (1967)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.