OSA's Digital Library

Applied Spectroscopy

Applied Spectroscopy


  • Vol. 50, Iss. 6 — Jun. 1, 1996
  • pp: 740–746

Steady-State Fluorescence of Polystyrene Plasticized by Supercritical Carbon Dioxide

Ming Li and Frank V. Bright

Applied Spectroscopy, Vol. 50, Issue 6, pp. 740-746 (1996)

View Full Text Article

Acrobat PDF (655 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


A steady-state fluorescence study of low-molecular-weight polystyrene (MW = 1060 g/mol and 13,000 g/mol) plasticized in supercritical CO2 is reported. In addition to excitation wavelength, molecular weight, and polystyrene concentration dependencies, CO2 density also strongly affects the emission spectral contours. A major increase in the steady-state fluorescence intensity and a significant decrease in the polystyrene 320- to 365-nm fluorescence intensity ratio are observed when CO2 density is increased. Concentration and conformational changes in the polystyrene molecules are used to explain the observations, and these results are proposed to arise from changes in the plasticization power of supercritical CO2 over the density range studied. A theoretical model is proposed that is based on the assumption that, at low CO2 densities and low polymer concentrations, polystyrene intermolecular interactions are negligible. The proposed model is able to fit our observed fluorescence data from a CO2 reduced density of 0.3 to 1.4.

Ming Li and Frank V. Bright, "Steady-State Fluorescence of Polystyrene Plasticized by Supercritical Carbon Dioxide," Appl. Spectrosc. 50, 740-746 (1996)

Sort:  Journal  |  Reset


References are not available for this paper.

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited