OSA's Digital Library

Applied Spectroscopy

Applied Spectroscopy

| PUBLISHED BY SAS — AVAILABLE FROM SAS AND OSA

  • Vol. 50, Iss. 6 — Jun. 1, 1996
  • pp: 740–746

Steady-State Fluorescence of Polystyrene Plasticized by Supercritical Carbon Dioxide

Ming Li and Frank V. Bright

Applied Spectroscopy, Vol. 50, Issue 6, pp. 740-746 (1996)


View Full Text Article

Acrobat PDF (655 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

A steady-state fluorescence study of low-molecular-weight polystyrene (MW = 1060 g/mol and 13,000 g/mol) plasticized in supercritical CO2 is reported. In addition to excitation wavelength, molecular weight, and polystyrene concentration dependencies, CO2 density also strongly affects the emission spectral contours. A major increase in the steady-state fluorescence intensity and a significant decrease in the polystyrene 320- to 365-nm fluorescence intensity ratio are observed when CO2 density is increased. Concentration and conformational changes in the polystyrene molecules are used to explain the observations, and these results are proposed to arise from changes in the plasticization power of supercritical CO2 over the density range studied. A theoretical model is proposed that is based on the assumption that, at low CO2 densities and low polymer concentrations, polystyrene intermolecular interactions are negligible. The proposed model is able to fit our observed fluorescence data from a CO2 reduced density of 0.3 to 1.4.

Citation
Ming Li and Frank V. Bright, "Steady-State Fluorescence of Polystyrene Plasticized by Supercritical Carbon Dioxide," Appl. Spectrosc. 50, 740-746 (1996)
http://www.opticsinfobase.org/as/abstract.cfm?URI=as-50-6-740

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited