OSA's Digital Library

Applied Spectroscopy

Applied Spectroscopy

| PUBLISHED BY SAS — AVAILABLE FROM SAS AND OSA

  • Vol. 50, Iss. 6 — Jun. 1, 1996
  • pp: 781–784

High-Pressure On-Line Photolysis with NMR Detection

C. R. Yonker and S. L. Wallen

Applied Spectroscopy, Vol. 50, Issue 6, pp. 781-784 (1996)


View Full Text Article

Acrobat PDF (396 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

The investigation of the photoreversible fulgide Aberchrome-540 as a function of pressure and temperature with the use of nuclear magnetic resonance (NMR) detection is described. This technique demonstrates the novel combination of high-pressure NMR and laser photolysis with the use of fiber optics for the conversion of the fulgide on-line in the instrument. Investigation of the photolysis of Aberchrome-540 to 2.0 kbar and 120 °C is reported. Extension of this technique should allow the investigation of photoinitiated reaction kinetics and equilibria as a function of pressure and temperature with simultaneous structure characterization by NMR.

Citation
C. R. Yonker and S. L. Wallen, "High-Pressure On-Line Photolysis with NMR Detection," Appl. Spectrosc. 50, 781-784 (1996)
http://www.opticsinfobase.org/as/abstract.cfm?URI=as-50-6-781

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited