Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 50,
  • Issue 7,
  • pp. 939-947
  • (1996)

Time-Resolved Impulse Photoacoustic Measurements by Step-Scan FT-IR Spectrometry

Not Accessible

Your library or personal account may give you access

Abstract

An impulse/response approach for measuring photoacoustic spectra is described. Instead of the usual modulation from either a chopper or an interferometric phase modulation, a radiation pulse is used to generate the photoacoustic (PA) signal at each step of a step-scan FT-IR spectrometer. The signal from the PA cell is recorded as a time-resolved sequence. The time-dependent photoacoustic signal reveals depth-profiling information for solid samples. Examples of time-resolved impulse photoacoustic spectra (TRIPAS) of gas and solid samples are presented.

PDF Article
More Like This
Time-resolved spectral characterization of ring cavity surface emitting and ridge-type distributed feedback quantum cascade lasers by step-scan FT-IR spectroscopy

Markus Brandstetter, Andreas Genner, Clemens Schwarzer, Elvis Mujagic, Gottfried Strasser, and Bernhard Lendl
Opt. Express 22(3) 2656-2664 (2014)

Time-resolved, photothermal-deflection spectrometry with step optical excitation: experiments

Jianqin Zhou, Jianhua Zhao, Jun Shen, and Mauro Luciano Baesso
J. Opt. Soc. Am. B 22(11) 2409-2416 (2005)

Time-resolved, photothermal-deflection spectrometry with step optical excitation

Jianhua Zhao, Jun Shen, Cheng Hu, Jianqin Zhou, and Mauro Luciano Baesso
J. Opt. Soc. Am. B 21(5) 1065-1072 (2004)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.