OSA's Digital Library

Applied Spectroscopy

Applied Spectroscopy

| PUBLISHED BY SAS — AVAILABLE FROM SAS AND OSA

  • Vol. 51, Iss. 5 — May. 1, 1997
  • pp: 689–699

Wavelength Selection Characterization for NIR Spectra

Jason M. Brenchley, Uwe Horchner, and John H. Kalivas

Applied Spectroscopy, Vol. 51, Issue 5, pp. 689-699 (1997)


View Full Text Article

Acrobat PDF (392 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

For quantitative analysis of samples based on near-infrared (NIR) spectra, it is common practice to use full spectra in conjunction with partial least-squares (PLS) or principal component regression. Alternatively, least-squares (LS) can be used provided that proper wavelengths have been selected. Recently, optimization algorithms such as simulated annealing and the genetic algorithm have been applied to the selection of individual wavelengths. These algorithms are touted as global optimizers capable of locating the best set of parameters for a given large-scale optimization problem. Optimization methods such as simulated annealing and the genetic algorithm can become time intensive. Excessive computer time may be due not to computations but to the need to determine proper operational parameters to ensure acceptable optimization results. In order to reduce the time to select wavelengths, a different approach consists of selecting wavelengths directly on the basis of spectral criteria. This paper shows that results are not acceptable when one is separately using the criteria of large wavelength correlations to the prediction property, wavelengths associated with large values in loading vectors from PLS or derived from the singular value decomposition (SVD) of the spectra, and wavelengths associated with large PLS regression coefficients. However, it is demonstrated that acceptable results can be produced by using wavelength regions simultaneously associated with large correlations and loading values provided that the level of noise for identified wavelengths is also acceptable. Thus, this paper shows that, rather than using timeconsuming optimization algorithms that generally select individual wavelengths, one can achieve improved results based on wavelength windows directly selected. In other words, the described approach is founded on the exclusion of spectral regions rather than the search for distinct wavelengths. As part of the NIR spectral characterization, it is shown that certain loading vectors from the SVD of spectra are equivalent to correlograms for prediction properties. The same is shown to be true for PLS loading vectors. This type of analysis is useful for determining dominant properties of spectra, i.e., primary properties responsible for spectral variations.

Citation
Jason M. Brenchley, Uwe Horchner, and John H. Kalivas, "Wavelength Selection Characterization for NIR Spectra," Appl. Spectrosc. 51, 689-699 (1997)
http://www.opticsinfobase.org/as/abstract.cfm?URI=as-51-5-689

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

If you are accessing the full text through a member bundle, please use the Enhanced HTML link to gain access to the citation lists and other restricted features. Note that accessing both the PDF and HTML versions of an article will count as only one download against your account.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

If you are accessing the full text through a member bundle, please use the Enhanced HTML link to gain access to the citation lists and other restricted features. Note that accessing both the PDF and HTML versions of an article will count as only one download against your account.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited