Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 52,
  • Issue 1,
  • pp. 1-6
  • (1998)

Single-Molecule Detection in the Near-IR Using Continuous-Wave Diode Laser Excitation with an Avalanche Photon Detector

Not Accessible

Your library or personal account may give you access

Abstract

While single-molecule detection in flowing sample streams has been reported by a number of groups, the instrumentation can be somewhat prohibitive for many applications due to the complexity and extensive expertise required to operate such a device. In this paper we report on the construction of a single-molecule detection device that is rugged, compact, inexpensive, and easily operated by individuals not well trained in optics and laser operations. The singlemolecule detection apparatus consists of a semiconductor diode laser operating in a continuous-wave (CW) mode and a single photon avalanche diode transducer for converting the detected photons into transistor-transistor logic (TTL) pulses for displaying the data. In addition, the sampling volume is produced by a single-component lens, to create a volume on the order of 1 pL, allowing the sampling of microliter volumes of material on reasonable time scales. The device is targeted for operation in the near-IR region (700-1000 nm), where matrix interferences are minimal. Our data will demonstrate the detection of single molecules for the near-IR dyes IR132 and IR-125, in methanol solvents in flowing sample streams at sampling rates of 100-250 samples/s. Detection efficiencies for the investigated near-IR dyes were found to be 98% for IR-132 and 50% for IR-125. Previous attempts in our laboratory to detect single molecules of IR-125 using time-gated detection were unsuccessful because of the short upper-state lifetime of this fluorophore ( tau f = 472 ps).

PDF Article
More Like This
Single-molecule detection using continuous wave excitation of two-photon fluorescence

Ximiao Hou and Wei Cheng
Opt. Lett. 36(16) 3185-3187 (2011)

Theoretical minimum uncertainty of single-molecule localizations using a single-photon avalanche diode array

Quint Houwink, Dylan Kalisvaart, Shih-Te Hung, Jelmer Cnossen, Daniel Fan, Paul Mos, Arin Can Ülkü, Claudio Bruschini, Edoardo Charbon, and Carlas S. Smith
Opt. Express 29(24) 39920-39929 (2021)

Rapid and efficient detection of single chromophore molecules in aqueous solution

Li-Qiang Li and Lloyd M. Davis
Appl. Opt. 34(18) 3208-3217 (1995)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.