Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 52,
  • Issue 5,
  • pp. 702-712
  • (1998)

Analysis as a Function of Temperature of the Dynamic Linear Infrared Dichroism Spectra of Isotropic and Cold-Drawn High-Density Polyethylene

Not Accessible

Your library or personal account may give you access

Abstract

A dynamic linear infrared dichroism (DLIRD) study was carried out as a function of temperature on isotropic and cold-drawn highdensity polyethylene (HDPE) with the use of a rapid-scan setup. The dynamic in-phase dichroic spectrum and its components (parallel and perpendicular polarized spectra) were analyzed. From the results, it turned out that, in addition to molecular orientation effects, other effects such as frequency shifts are clearly identified in the dynamic signals, which furthermore were in agreement with previously reported results on polyethylene under stress from the use of conventional infrared spectroscopy. Moreover, the frequency shifts were more apparent at the lowest temperatures and in the cold-drawn material, i.e., with increasing sample moduli. A revision of the interpretation of the results published earlier, in which the dynamic signals were solely attributed to molecular orientations, is also carried out in view of our results. From our results it seems that indeed an orientation of the crystallographic b axis parallel to the applied strain is suggested from the-CH2- bending and rocking ranges of the isotropic sample. However, an orientation of the crystallographic a axis of the unit cell perpendicular to the strain direction as suggested from previous studies is questioned, as well as the assignment of a certain dynamic signal to a reorientation of chains in the amorphous phase. Besides these results, the behavior of the-CH2- wagging at 1176 cm-1, assigned to the crystalline phase, suggests an orientation of the crystallographic c axis of the unit cell parallel to the strain direction. As a consequence, two conclusions are made: (1) a more complex orientation motion occurs in the crystals than has been reported so far, and (2) a more thorough study of the DLIRD signals has to be carried out in which other factors such as thickness variations and instrumental artifacts need to be addressed.

PDF Article
More Like This
Coupling between linear dichroism and piezobirefringence in CdS at the isotropic point

Marie May, Solange Debrus, Jérôme Amzallag, and Xiao-Ming Hui
J. Opt. Soc. Am. A 10(11) 2394-2401 (1993)

Infrared Circular Dichroism and Linear Dichroism Spectrophotometer

Ilan Chabay and G. Holzwarth
Appl. Opt. 14(2) 454-459 (1975)

Optically anisotropic polyethylene–gold nanocomposites

Yvo Dirix, Cyril Darribère, Wilbert Heffels, Cees Bastiaansen, Walter Caseri, and Paul Smith
Appl. Opt. 38(31) 6581-6586 (1999)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved