OSA's Digital Library

Applied Spectroscopy

Applied Spectroscopy


  • Vol. 53, Iss. 12 — Dec. 1, 1999
  • pp: 1575–1581

Improving Complex Near-IR Calibrations Using a New Wavelength Selection Algorithm

Michael J. McShane, Brent D. Cameron, Gerard L. Cote, and Clifford H. Spiegelman

Applied Spectroscopy, Vol. 53, Issue 12, pp. 1575-1581 (1999)

View Full Text Article

Acrobat PDF (262 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


Near-infrared spectroscopy is being considered as a tool for the noninvasive determination of important cell culture media constituents, which would allow frequent, harmless sampling and computer interfacing for closed-loop control. Partial least-squares calibration models for glucose and lactate are constructed for cell culture media and aqueous media comprised of several absorbing species. Wavelength selection, having failed in previous attempts with these data, is shown to reduce the error prediction and number of required wavelengths when performed with the use of a newly developed "peak-hopping" algorithm. The selection method reduces prediction errors in every case considered here and is extendable to combined calibration models that are built for use with a particular type of sample with the aid of high-quality spectra from simpler mixtures. The new selection algorithm leads to calibrations producing accurate predictions with fewer wavelengths, in support of previous results obtained when applied to single-component Raman spectroscopy data. The findings continue to suggest that the algorithm can be used as a simple alternative to the difficult-to-configure genetic algorithm.

Michael J. McShane, Brent D. Cameron, Gerard L. Cote, and Clifford H. Spiegelman, "Improving Complex Near-IR Calibrations Using a New Wavelength Selection Algorithm," Appl. Spectrosc. 53, 1575-1581 (1999)

Sort:  Journal  |  Reset


References are not available for this paper.

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited