Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 53,
  • Issue 12,
  • pp. 1638-1641
  • (1999)

Theoretical Study of the Electric Field Distribution in the Cathode Fall Region of a Spherical Hollow Cathode Discharge

Not Accessible

Your library or personal account may give you access

Abstract

A theory is presented for a simplified, one-dimensional model of a spherical hollow cathode discharge. Analytical expressions are derived for the electric field distribution and cathode fall voltage as functions of radial distance across the cathode dark space. The model assumes that the drift velocity of ions obeys the high-field approximation. An empirically derived discharge maintenance condition is assumed which, in addition to the secondary electron emission due to ions, includes the secondary electron emission effects of photons and metastable atoms from the negative glow region. The electric field and cathode fall voltage are shown to be monotonic functions of radial distance across the cathode dark space, which agrees qualitatively with previous theoretical and experimental work on cylindrical hollow cathodes. The sublinear mathematical form obtained for the electric field and its relationship to other cathode geometries is briefly discussed.

PDF Article
More Like This
Uranium ionization in a pulsed krypton-sustained hollow-cathode discharge

A. Gleizes, P. Bouchard, P. Pianarosa, and J. M. Gagné
Appl. Opt. 23(24) 4532-4538 (1984)

Mechanistic study of the optogalvanic effect in a hollow-cathode discharge

C. Drèze, Y. Demers, and J. M. Gagné
J. Opt. Soc. Am. 72(7) 912-917 (1982)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.