Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 53,
  • Issue 3,
  • pp. 325-331
  • (1999)

Near-Infrared Spectroscopic Measurement of Myoglobin Oxygen Saturation in the Presence of Hemoglobin Using Partial Least-Squares Analysis

Not Accessible

Your library or personal account may give you access

Abstract

Myoglobin is an important intracellular protein found in cardiac and skeletal muscle. It is involved in the intracellular transport of oxygen from the cell membrane to the mitochondria where oxidative phosphorylation takes place. The optical absorbance characteristics of myoglobin are similar to those of hemoglobin in the nearinfrared spectral region. Distinguishing spectral information of myoglobin from hemoglobin should allow for determination of intracellular oxygen availability in muscle. Partial least-squares analysis is used in this report to determine the oxygen saturation of myoglobin, in the presence of hemoglobin, in vitro. Studies were performed with the use of both transmission and reflectance spectroscopic techniques. Transmission spectra of myoglobin solutions were determined with varying degrees of oxygen saturation achieved by deoxygenating the solution using E. coli. Calibration spectral data sets were developed with the use of varying concentrations of hemoglobin interference, and with varying degrees of myoglobin oxygen saturation. Reflectance spectra were obtained from myoglobin and hemoglobin solutions containing a scattering agent to mimic muscle tissue conditions. Predicted myoglobin saturation values were within 2% of the known saturation values from the use of this analysis. Partial least-squares analysis allows for accurate prediction of myoglobin oxygen saturation in the presence of hemoglobin from either transmission of reflectance near-infrared spectra.

PDF Article
More Like This
Quantitative measurement of muscle oxygen saturation without influence from skin and fat using continuous-wave near infrared spectroscopy

Ye Yang, Olusola O. Soyemi, Peter J. Scott, Michelle R. Landry, Stuart M. C. Lee, Leah Stroud, and Babs R. Soller
Opt. Express 15(21) 13715-13730 (2007)

Effect of hemoglobin extinction spectra on optical spectroscopic measurements of blood oxygen saturation

Arjen Amelink, Theo Christiaanse, and Henricus J. C. M. Sterenborg
Opt. Lett. 34(10) 1525-1527 (2009)

Spectroscopic diffuse optical tomography for the quantitative assessment of hemoglobin concentration and oxygen saturation in breast tissue

Troy O. McBride, Brian W. Pogue, Ellen D. Gerety, Steven B. Poplack, Ulf L. Österberg, and Keith D. Paulsen
Appl. Opt. 38(25) 5480-5490 (1999)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.