OSA's Digital Library

Applied Spectroscopy

Applied Spectroscopy

| PUBLISHED BY SAS — AVAILABLE FROM SAS AND OSA

  • Vol. 53, Iss. 3 — Mar. 1, 1999
  • pp: 351–355

Spectroscopy of Hydrothermal Reactions. Part XI: Infrared Absorptivity of CO2 and N2O in Water at Elevated Temperature and Pressure

P. G. Maiella, J. W. Schoppelrei, and T. B. Brill

Applied Spectroscopy, Vol. 53, Issue 3, pp. 351-355 (1999)


View Full Text Article

Acrobat PDF (188 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

The temperature dependence of the infrared absorptivity of the asymmetric stretch of CO2 and N2O dissolved in H2O was determined at 300-600 K under 275 atm. These results are essential for using these species as internal calibrants of the rate of many hydrothermal reactions by infrared spectroscopy. The absorptivity (band area) for upsilon3 (CO2) at constant number density increases from 1.58 X 10 4 cm/mmol at 300 K to 2.68 X 10 4 cm/mmol at 600 K. The absorptivity of upsilon3 (N2O) is 8.57 X 10 3 cm/mmol at 300 K and 1.33 X 10 4 cm/mmol at 525 K. The absorptivity is suppressed in the presence of H2O by a factor of about 5 compared to results for the gas phase. The absorptivity increases, however, with increasing temperature in H2O solution, which is opposite the trend for the gas phase. The Lorentzian line shape in H2O solution provides a global relaxation time of 1 ps, which is more consistent with relaxation by vibrational energy transfer among associated molecules than by collisions or stochastic modulation by the surrounding H2O field.

Citation
P. G. Maiella, J. W. Schoppelrei, and T. B. Brill, "Spectroscopy of Hydrothermal Reactions. Part XI: Infrared Absorptivity of CO2 and N2O in Water at Elevated Temperature and Pressure," Appl. Spectrosc. 53, 351-355 (1999)
http://www.opticsinfobase.org/as/abstract.cfm?URI=as-53-3-351


Sort:  Journal  |  Reset

References

References are not available for this paper.

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited