OSA's Digital Library

Applied Spectroscopy

Applied Spectroscopy


  • Vol. 53, Iss. 4 — Apr. 1, 1999
  • pp: 402–414

Evaluation of Data Pretreatment and Model Building Methods for the Determination of Glucose from Near-Infrared Single-Beam Spectra

Qing Ding, Gary W. Small, and Mark A. Arnold

Applied Spectroscopy, Vol. 53, Issue 4, pp. 402-414 (1999)

View Full Text Article

Acrobat PDF (501 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


Near-infrared single-beam spectra are used to build partial least-squares (PLS) calibration models for the determination of glucose in biological matrices. Two different data sets of the same sample constituents are used in this investigation. The glucose samples consist of an aqueous matrix of varied concentrations of bovine serum albumin (BSA) and triacetin. The BSA and triacetin are models for blood proteins and triglycerides, respectively. Due to the effects of intensity variation in the single-beam spectra, calibration models obtained with unprocessed spectra are not as good as those computed with the corresponding spectra in absorbance units. When this intensity variation is reduced through the use of multiplicative signal correction (MSC), a spectral normalization method, or a logarithmic transform, the resulting models are as good as or better than those obtained in the analysis of absorbance spectra. An attempt is made to model the nonlinear relationship between single-beam spectral intensities and glucose concentrations by use of stepwise quadratic PLS (QPLS) models. The QPLS models are found to perform better than linear PLS models in some cases (e.g., with MSC-corrected single-beam spectra). The effect of digital filtering on the calibration models computed with single-beam spectra is also studied. The results obtained with and without filtering are found to be similar in terms of model performance, but the models based on filtered single-beam intensities require fewer latent variables and perform more consistently as a group. A final test is performed to compare the robustness of calibration models computed with single-beam spectra to those based on absorbance spectra. When applied to spectra that lie outside the time span of the calibration data, the models based on single-beam spectra are still competitive with those computed with absorbance spectra.

Qing Ding, Gary W. Small, and Mark A. Arnold, "Evaluation of Data Pretreatment and Model Building Methods for the Determination of Glucose from Near-Infrared Single-Beam Spectra," Appl. Spectrosc. 53, 402-414 (1999)

Sort:  Journal  |  Reset


References are not available for this paper.

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited