OSA's Digital Library

Applied Spectroscopy

Applied Spectroscopy

| PUBLISHED BY SAS — AVAILABLE FROM SAS AND OSA

  • Vol. 54, Iss. 1 — Jan. 1, 2000
  • pp: 110–126

Depth Profiling of Optical Absorption in Thin Films via the Mirage Effect and a New Inverse Scattering Theory. Part I: Principles and Methodology

J. F. Power, S. W. Fu, and M. A. Schweitzer

Applied Spectroscopy, Vol. 54, Issue 1, pp. 110-126 (2000)


View Full Text Article

Acrobat PDF (576 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

Impulse mirage effect spectroscopy is developed in this work as a nondestructive method for depth profiling the optical properties of samples which are nearly thermally homogeneous with depth. Both a theory and an experimental methodology are presented. An inverse scattering theory of the experimental photothermal deflection signal is derived, based on a previous theory of the impulse mirage effect, which takes into account the effect of Fresnel diffraction on the probe beam. To reconstruct the depth profile of heat source density generated by light absorption in an unknown sample, we have applied our inverse theory to the experimental impulse response, using a regularized minimum square error reconstruction algorithm based on our previously published expectation minimum principle. Because this reconstruction problem is ill posed, it was necessary to identify and compensate for all experimental bias errors significantly affecting the fidelity of the depth profiles. A procedure for obtaining the overall best-fit model of the depth profile given the minimum prior experimental information is presented. These procedures have produced an agreement between the experimental and theoretically predicted mirage effect response to within typical root-mean-square error levels of 0.5% or less.

Citation
J. F. Power, S. W. Fu, and M. A. Schweitzer, "Depth Profiling of Optical Absorption in Thin Films via the Mirage Effect and a New Inverse Scattering Theory. Part I: Principles and Methodology," Appl. Spectrosc. 54, 110-126 (2000)
http://www.opticsinfobase.org/as/abstract.cfm?URI=as-54-1-110


Sort:  Journal  |  Reset

References

References are not available for this paper.

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited