OSA's Digital Library

Applied Spectroscopy

Applied Spectroscopy

| PUBLISHED BY SAS — AVAILABLE FROM SAS AND OSA

  • Vol. 54, Iss. 1 — Jan. 1, 2000
  • pp: 127–137

Depth Profiling of Optical Absorption in Thin Films via the Mirage Effect and a New Inverse Scattering Theory. Part II: Experimental Reconstructions on Well-Characterized Materials

S. W. Fu and J. F. Power

Applied Spectroscopy, Vol. 54, Issue 1, pp. 127-137 (2000)


View Full Text Article

Acrobat PDF (401 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

Mirage effect spectrometry is experimentally evaluated in this work as a technique of optical depth profiling in thin films where no prior information is available about the sample properties. An apparatus suitable for performing quantitative measurements is described. High-precision experimental alignment procedures are introduced along with a new method for precise optical correction of the detector signal for experimental frequency response nonuniformities. Reconstructions were made of the heat source density and absorption coefficient depth profile in materials with known depth dependence. These included samples approximating weighted delta function arrays, and depth-continuous media known to obey Beer's law to a good approximation. The properties of these samples were examined independently by using a technique of depth-sensitive light microscopy. Mirage effect depth profiles reconstructed on samples containing discrete absorbers were effectively regularization limited, indicating that resolution is limited by random error in the data rather than experimental bias. Depth profiles obtained in continuously absorbing media show a good agreement with those obtained by reference methods.

Citation
S. W. Fu and J. F. Power, "Depth Profiling of Optical Absorption in Thin Films via the Mirage Effect and a New Inverse Scattering Theory. Part II: Experimental Reconstructions on Well-Characterized Materials," Appl. Spectrosc. 54, 127-137 (2000)
http://www.opticsinfobase.org/as/abstract.cfm?URI=as-54-1-127

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited