OSA's Digital Library

Applied Spectroscopy

Applied Spectroscopy


  • Vol. 54, Iss. 2 — Feb. 1, 2000
  • pp: 164–174

Influence of Gas Sampling on Analyte Transport within the ICP and Ion Sampling for ICP-MS Studied Using Individual, Isolated Sample Droplets

Ian I. Stewart, Carl E. Hensman, and John W. Olesik

Applied Spectroscopy, Vol. 54, Issue 2, pp. 164-174 (2000)

View Full Text Article

Acrobat PDF (545 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


The effect of gas flow entrainment on the gas sampling, ion sampling, and ion detection processes in inductively coupled plasma mass spectrometry (ICP-MS) has been investigated. Isolated, single droplets of sample from a monodisperse dried microparticulate injector (MDMI) were used in conjunction with time-resolved ICP-MS, photographs of ion cloud movement, and time-gated imaging using a gateable, intensified charge-coupled device (ICCD) detector mounted on an imaging spectrometer. The results indicate that gas flow entrainment into the sampling orifice can have a significant effect on the plasma gas velocities as far as 7 mm from the sampling orifice. The effects are most pronounced within 3 mm of the sampling orifice. The trends in these results are consistent with theoretical calculations. Photographic images show that plasma gas initially as far as 3 mm off axis adopts a curved path into the sampling orifice. Time-resolved emission images of Sr+ ion clouds approaching the sampling orifice demonstrate the entrainment process and significant distortion of the ion cloud as it flows into the sampling orifice. Spatial maps of La+ ICP-MS signals were acquired as a function of distance from the vaporization point and distance from the plasma axis. The results suggest that gas entrainment has a significant effect on the spatial path of ions in the plasma and that accurate radially resolved spatial mapping of plasmas using mass spectrometry may not be possible. The widths of radially resolved La+ ICP-MS signal peaks do not change significantly when ions are sampled 2 mm from the vaporization point compared to 5 mm away. In contrast, ICP-MS signals measured on axis as a function of time clearly show broadening due to diffusion. These observations suggest that some detected ions may have originated from offaxis locations in the plasma.

Ian I. Stewart, Carl E. Hensman, and John W. Olesik, "Influence of Gas Sampling on Analyte Transport within the ICP and Ion Sampling for ICP-MS Studied Using Individual, Isolated Sample Droplets," Appl. Spectrosc. 54, 164-174 (2000)

Sort:  Journal  |  Reset


References are not available for this paper.

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited