OSA's Digital Library

Applied Spectroscopy

Applied Spectroscopy

| PUBLISHED BY SAS — AVAILABLE FROM SAS AND OSA

  • Vol. 54, Iss. 2 — Feb. 1, 2000
  • pp: 239–245

Comparison of Near-Infrared, Infrared, and Raman Spectroscopy for the Analysis of Heavy Petroleum Products

Hoeil Chung and Min-Sik Ku

Applied Spectroscopy, Vol. 54, Issue 2, pp. 239-245 (2000)


View Full Text Article

Acrobat PDF (256 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

Near-infrared (NIR) spectroscopy has been successfully applied to the determination of API (American Petroleum Institute) gravity of atmospheric residue (AR), which is the heaviest fraction in crude oil. This fraction is completely dark and very viscous. Preliminary studies involving Raman and infrared (IR) spectroscopies were also evaluated along with NIR spectroscopy. The Raman spectrum of AR was completely dominated by strong fluorescence from polycyclic aromatic hydrocarbons, called asphaltenes. IR spectroscopy provided reasonable spectral features; however, its spectral reproducibility was poorer and noisier than that of NIR. Although absorption bands in the NIR region were broad and less characterized, NIR provided better spectral reproducibility with higher signal-to-noise ratio (which is one of the most important parameters in quantitative calibration in comparison to Raman and IR spectroscopies). Partial least-squares (PLS) regression was utilized to develop calibration models. NIR spectra of AR samples were broad, and baselines were varying due to the strong absorption in the visible range. However, the necessary information was successfully extracted and correlated to the reference API gravity with the use of PLS regression. API gravities in the prediction set were accurately predicted with an SEP (standard error of prediction) of 0.22. Additionally NIR showed approximately three times better repeatability compared to the ASTM reference method, which directly influences the process control performance.

Citation
Hoeil Chung and Min-Sik Ku, "Comparison of Near-Infrared, Infrared, and Raman Spectroscopy for the Analysis of Heavy Petroleum Products," Appl. Spectrosc. 54, 239-245 (2000)
http://www.opticsinfobase.org/as/abstract.cfm?URI=as-54-2-239

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited