Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 54,
  • Issue 2,
  • pp. 294-299
  • (2000)

Investigation of Noninvasive in Vivo Blood Hematocrit Measurement Using NIR Reflectance Spectroscopy and Partial Least-Squares Regression

Not Accessible

Your library or personal account may give you access

Abstract

Hematocrit (Hct), the volume percent of red cells in blood, is monitored routinely for blood donors, surgical patients, and trauma victims and requires blood to be removed from the patient. An accurate, noninvasive method for directly measuring hematocrit on patients is desired for these applications. The feasibility of non-invasive hematocrit measurement by using near-infrared (NIR) spectroscopy and partial least-squares (PLS) techniques was investigated, and methods of <i>in vivo</i> calibration were examined. Twenty Caucasian patients undergoing cardiac surgery on cardiopulmonary bypass were randomly selected to form two study groups. A fiber-optic probe was attached to the patient's forearm, and NIR spectra were continuously collected during surgery. Blood samples were simultaneously collected and reference Hct measurements were made with the spun capillary method. PLS multivariate calibration techniques were applied to investigate the relationship between spectral and Hct changes. Single patient calibration models were developed with good cross-validated estimation of accuracy (~ 1 Hct%) and trending capability for most patients. Time-dependent system drift, patient temperature, and venous oxygen saturation were not correlated with the hematocrit measurements. Multi-subject models were developed for prediction of independent subjects. These models demonstrated a significant patient-specific offset that was shown to be partially related to spectrometer drift. The remaining offset is attributed to the large spectral variability of patient tissue, and a significantly larger set of patients would be required to adequately model this variability. After the removal of the offset, the cross-validated estimation of accuracy is 2 Hct%.

PDF Article
More Like This
Toward noninvasive measurement of blood hematocrit using spectral domain low coherence interferometry and retinal tracking

Nicusor V. Iftimia, Daniel X. Hammer, Chad E. Bigelow, David I. Rosen, Teoman Ustun, Anthony A. Ferrante, Danthu Vu, and R. Daniel Ferguson
Opt. Express 14(8) 3377-3388 (2006)

Acidity measurement of iron ore powders using laser-induced breakdown spectroscopy with partial least squares regression

Z.Q. Hao, C.M. Li, M. Shen, X.Y. Yang, K.H. Li, L.B. Guo, X.Y. Li, Y.F. Lu, and X.Y. Zeng
Opt. Express 23(6) 7795-7801 (2015)

Partial least squares regression calculation for quantitative analysis of metals submerged in water measured using laser-induced breakdown spectroscopy

Tomoko Takahashi, Blair Thornton, Takumi Sato, Toshihiko Ohki, Koichi Ohki, and Tetsuo Sakka
Appl. Opt. 57(20) 5872-5883 (2018)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved