Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 54,
  • Issue 2,
  • pp. 316-323
  • (2000)

Toward the Interpretation of Electroreflectance Spectral Profiles: Hemin Adsorbed on an HOPG Electrode Revisited

Not Accessible

Your library or personal account may give you access

Abstract

The features of the potential-modulated UV-visible reflectance (electroreflectance) spectrum at an electrode/solution interface are discussed by comparing experimental and simulated spectra. At a basal plane of a highly oriented pyrolytic graphite (HOPG) electrode covered with a molecular layer of hemin in 0.1 M Na<sub>2</sub>B<sub>4</sub>O<sub>7</sub> aqueous solution, the electroreflectance signal was confirmed to be proportional to the amount of adsorbed hemin interconverted between oxidized and reduced forms. The electroreflectance spectrum in response to <i>p</i>-polarized incident light depended little on the incident angle, and the spectral profile was different from the difference absorption spectrum between oxidized and reduced hemin in solution phase. The spectral feature of the simulated electroreflectance spectrum with the use of Fresnel equations for a stratified three-phase optical model with a thin-layer approximation was markedly different from the experimental spectrum in regard to spectral profile and incident angle dependence. These results may suggest that refinement of the optical model to predict the reflectance spectrum at an electrode surface covered with a molecular layer is necessary for the interpretation of electroreflectance spectral profiles.

PDF Article
More Like This
High spectral resolution x-ray optics with highly oriented pyrolytic graphite

H. Legall, H. Stiel, V. Arkadiev, and A.A. Bjeoumikhov
Opt. Express 14(10) 4570-4576 (2006)

Reflectometric spectroscopy of adsorbed molecular layers

V. Daneu, D. J. Ehrlich, and R. M. Osgood
Opt. Lett. 8(3) 151-153 (1983)

Diode laser spectroscopy of adsorbed gas on metal surfaces

David K. Lambert
Appl. Opt. 27(17) 3744-3753 (1988)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.