Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 54,
  • Issue 6,
  • pp. 800-806
  • (2000)

Stand-off Detection of Chemicals by UV Raman Spectroscopy

Not Accessible

Your library or personal account may give you access

Abstract

Experimental results are reported on a mobile, stand-alone, solarblind ultraviolet (UV) Raman lidar system for the stand-off detection and identification of liquid and solid targets at ranges of hundreds of meters. The lidar is a coaxial system capable of performing rangeresolved measurements of gases and aerosols, as well as solids and liquids. The transmitter is a flash lamp pumped 30 Hz Nd:YAG laser with quadrupled output at 266 nm. The receiver subsystem is comprised of a 40 cm Cassegrain telescope, a holographic UV edge filter for suppressing the elastic channel, a 0.46 m Czerny-Turner spectrometer, and a time gated intensified charge-coupled device (CCD) detector. The rejection of elastic light scattering by the edge filter is better than one part in 10<sup>5</sup>, while the transmittance 500 cm<sup>-1</sup> to the red of the laser line is greater than 50%. Raman data are shown for selected solids, neat liquids, and mixtures down to the level of 1% volume ratio. On the basis of the strength of the Raman returns, a stand-off detection limit of ~500 g/m<sup>2</sup> for liquid spills of common solvents at the range of one half of a kilometer is possible.

PDF Article
More Like This
Stand-off detection of explosives particles by multispectral imaging Raman spectroscopy

Henric Östmark, Markus Nordberg, and Torgny E. Carlsson
Appl. Opt. 50(28) 5592-5599 (2011)

Stand-off detection of solid targets with diffuse reflection spectroscopy using a high-power mid-infrared supercontinuum source

Malay Kumar, Mohammed N. Islam, Fred L. Terry, Michael J. Freeman, Allan Chan, Manickam Neelakandan, and Tariq Manzur
Appl. Opt. 51(15) 2794-2807 (2012)

Multiplex coherent anti-Stokes Raman scattering spectroscopy for trace chemical detection

Sherrie B. Pilkington, Stephen D. Roberson, and Paul M. Pellegrino
Appl. Opt. 56(3) B159-B168 (2017)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.