OSA's Digital Library

Applied Spectroscopy

Applied Spectroscopy


  • Vol. 54, Iss. 7 — Jul. 1, 2000
  • pp: 1055–1068

Derivative Preprocessing and Optimal Corrections for Baseline Drift in Multivariate Calibration

Christopher D. Brown, Lorenzo Vega-Montoto, and Peter D. Wentzell

Applied Spectroscopy, Vol. 54, Issue 7, pp. 1055-1068 (2000)

View Full Text Article

Acrobat PDF (579 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


The characteristics of baseline drift are discussed from the perspective of error covariance. From this standpoint, the operation of derivative filters as preprocessing tools for multivariate calibration is explored. It is shown that convolution of derivative filter coefficients with the error covariance matrices for the data tend to reduce the contributions of correlated error, thereby reducing the presence of drift noise. This theory is corroborated by examination of experimental error covariance matrices before and after derivative preprocessing. It is proposed that maximum likelihood principal components analysis (MLPCA) is an optimal method for countering the deleterious effects of drift noise when the characteristics of that noise are known, since MLPCA uses error covariance information to perform a maximum likelihood projection of the data. In simulation and experimental studies, the performance of MLPCR and derivative-preprocessed PCR are compared to that of PCR with multivariate calibration data showing significant levels of drift. MLPCR is found to perform as well as or better than derivative PCR (with the best-suited derivative filter characteristics), provided that reasonable estimates of the drift noise characteristics are available. Recommendations are given for the use of MLPCR with poor estimates of the error covariance information.

Christopher D. Brown, Lorenzo Vega-Montoto, and Peter D. Wentzell, "Derivative Preprocessing and Optimal Corrections for Baseline Drift in Multivariate Calibration," Appl. Spectrosc. 54, 1055-1068 (2000)

Sort:  Journal  |  Reset


References are not available for this paper.

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited