Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 54,
  • Issue 7,
  • pp. 948-955
  • (2000)

Investigation of the Temperature Behavior of the Bands Due to the Methylene Stretching Vibrations of Phospholipid Acyl Chains by Two-Dimensional Infrared Correlation Spectroscopy

Not Accessible

Your library or personal account may give you access

Abstract

The temperature-induced gel-to-liquid crystalline phase transition of dipalmitoylphosphatidylcholine (DPPC) is characterized by a shift towards high frequencies and an increase of the width of the bands due to the methylene stretching vibrations. These spectral modifications are frequently used to measure the conformational order of lipid acyl chains. However, it is not clear whether these bands contain two spectral components due to <i>trans</i> and <i>gauche</i> conformers or whether they gradually shift with temperature. The temperature-induced gel-to-liquid crystalline phase transition of DPPC has been investigated in the present study by two-dimensional infrared (2D-IR) correlation spectroscopy. Our results show that each methylene stretching band in both the synchronous and the asynchronous maps is characterized by two peaks. The same pattern is also observed when the temperature range is restricted to the gel phase. These results were compared to those obtained by spectral simulations using either a single band that shifts in frequency and gets broader with the increase of temperature (shiftingband model), simulating a continuously evolving one-phase system, or a band made of two components (two-band model), simulating the <i>trans</i> and <i>gauche</i> spectral contributions of a two-phase system. The results obtained for the asynchronous maps of the simulated spectra indicate clearly that the experimental results cannot be modeled by a pure two-phase system and are best simulated by the shifting-band model.

PDF Article
More Like This
Use of attenuated total reflectance Fourier transform infrared spectroscopy to monitor the development of lipid aggregate structures

Mateo R. Hernandez, Elyse N. Towns, Terry C. Ng, Brian C. Walsh, Richard Osibanjo, Atul N. Parikh, and Donald P. Land
Appl. Opt. 51(15) 2842-2846 (2012)

Visualization and measurement of the local absorption coefficients of single bilayer phospholipid membranes using scanning near-field optical microscopy

Arif M. Siddiquee, Imad Younus Hasan, Shibiao Wei, Daniel Langley, Eugeniu Balaur, Chen Liu, Jiao Lin, Brian Abbey, Adam Mechler, and Shanshan Kou
Biomed. Opt. Express 10(12) 6569-6579 (2019)

Evaluation of the changes in human milk lipid composition and conformational state with Raman spectroscopy during a breastfeed

Johanna R. de Wolf, Anki Lenferink, Aufried Lenferink, Cees Otto, and Nienke Bosschaart
Biomed. Opt. Express 12(7) 3934-3947 (2021)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.