OSA's Digital Library

Applied Spectroscopy

Applied Spectroscopy


  • Vol. 54, Iss. 8 — Aug. 1, 2000
  • pp: 1183–1191

IR Microscopic Imaging of Pathological States and Fracture Healing of Bone

Richard Mendelsohn, Eleftherios P. Paschalis, Pamela J. Sherman, and Adele L. Boskey

Applied Spectroscopy, Vol. 54, Issue 8, pp. 1183-1191 (2000)

View Full Text Article

Acrobat PDF (3427 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


The application of IR microscopic imaging to the study of bone disease and fracture healing is demonstrated. Samples of normal and osteoporotic human iliac crest biopsies were prepared and examined at ~6-10 μm spatial resolution and 8 cm-1 spectral resolution with a 64 × 64 MCT focal plane array detector coupled to a Fourier transform infrared (FT-IR) microscope and a step-scanning interferometer. Two spectral parameters, one that monitors the extent of mineral (hydroxyapatite) formation in the tissue and another that monitors the size/perfection of the crystals, were compared in the samples generated from normal and pathological tissues. The average mineral levels in the osteoporotic sample were reduced by ~40% from the normal. In addition, the crystal size/perfection was substantially enhanced in the disease state. The applicability of IR imaging techniques to the study of therapeutic intervention was also investigated in a study of the effects of estrogen therapy on fracture healing in rat femurs. Femurs were examined by IR microscopic imaging 4 weeks after fracture. IR imaging showed that the mineral level was enhanced in estrogen-treated samples. In addition, the crystals were larger/more perfect in the treated specimens. These data demonstrate the utility of IR spectroscopic imaging for the study of pathological states of hard tissue.

Richard Mendelsohn, Eleftherios P. Paschalis, Pamela J. Sherman, and Adele L. Boskey, "IR Microscopic Imaging of Pathological States and Fracture Healing of Bone," Appl. Spectrosc. 54, 1183-1191 (2000)

Sort:  Journal  |  Reset


References are not available for this paper.

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited