OSA's Digital Library

Applied Spectroscopy

Applied Spectroscopy

| PUBLISHED BY SAS — AVAILABLE FROM SAS AND OSA

  • Vol. 55, Iss. 2 — Feb. 1, 2001
  • pp: 111–113

Negligible Sample Heating from Synchrotron Infrared Beam

Michael C. Martin, Nelly M. Tsvetkova, John H. Crowe, and Wayne R. McKinney

Applied Spectroscopy, Vol. 55, Issue 2, pp. 111-113 (2001)


View Full Text Article

Acrobat PDF (124 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

The use of synchrotron sources for infrared (IR) spectromicroscopy provides greatly increased brightness that enables high-quality IR measurements at diffraction-limited spatial resolutions. This capability permits synchrotron-based IR spectromicroscopy to be applied to biological applications at spatial resolutions on the order of the size of a single mammalian cell. The question then arises, "Does the intense synchrotron beam harm biological samples?" Mid-IR photons are too low in energy to break bonds directly; however, they could cause damage to biological molecules due to heating. In this work, we present measurements that show negligible sample heating effects from a diffraction-limited synchrotron IR source. The sample used is fully hydrated lipid bilayers composed of dipalmitoylphosphatidylcholine (DPPC), which undergoes a phase transition from a gel into a liquid-crystalline state at about 315 K during heating. Several IR-active vibrational modes clearly shift in frequency when the sample passes through the phase transition. We calibrate and then use these shifting vibrational modes as an in situ temperature sensor.

Citation
Michael C. Martin, Nelly M. Tsvetkova, John H. Crowe, and Wayne R. McKinney, "Negligible Sample Heating from Synchrotron Infrared Beam," Appl. Spectrosc. 55, 111-113 (2001)
http://www.opticsinfobase.org/as/abstract.cfm?URI=as-55-2-111

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

If you are accessing the full text through a member bundle, please use the Enhanced HTML link to gain access to the citation lists and other restricted features. Note that accessing both the PDF and HTML versions of an article will count as only one download against your account.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

If you are accessing the full text through a member bundle, please use the Enhanced HTML link to gain access to the citation lists and other restricted features. Note that accessing both the PDF and HTML versions of an article will count as only one download against your account.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited