Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 55,
  • Issue 6,
  • pp. 663-669
  • (2001)

Analytic Solution to the Autocorrelation Function for Lateral Diffusion and Rare Strong Adsorption

Not Accessible

Your library or personal account may give you access

Abstract

An analytic expression is derived to describe the autocorrelation function for fluorophors interacting with heterogeneous chemical interfaces, where both lateral diffusion and reversible strong adsorption occur. The expression is accurate when the rate of strong adsorption is low compared to the rates of both diffusion and desorption, enabling analysis by nonlinear regression. Simulations of single molecules are employed to investigate the applicability of the analytic equation for interpretation of chemical equilibrium and kinetics of single fluorescent molecules undergoing both lateral diffusion and varying amounts of specific adsorption at chemical interfaces. The simulations show that the analytic equation accurately describes the autocorrelation decay, and the equation begins to deviate, as expected, when the adsorption rate becomes large. The results show that a smaller beam size enhances the ability to extract sorption kinetics from the autocorrelation decay, and that a larger beam size enhances the ability to obtain information about the diffusion coefficient with minimal interference from sorption processes. The expression provides a tool for choosing between fluorescence correlation spectroscopy and single-molecule sorting in studies of heterogeneous surfaces.

PDF Article
More Like This
Autocorrelation function of channel matrix in few-mode fibers with strong mode coupling

Qian Hu and William Shieh
Opt. Express 21(19) 22153-22165 (2013)

Excitation saturation in two-photon fluorescence correlation spectroscopy

Keith Berland and Guoqing Shen
Appl. Opt. 42(27) 5566-5576 (2003)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved