Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 56,
  • Issue 7,
  • pp. 846-851
  • (2002)

Characteristics of Gasoline Fluorescence Using 404-nm Semi-Conductor Laser Diode Excitation

Not Accessible

Your library or personal account may give you access

Abstract

The recent availability of reliable and relatively low-cost GaN based semi-conductor laser diode sources emitting at 404 nm has opened many new areas for fluorescence based measurements. This article characterizes the fluorescence behavior of commercial liquid-phase gasoline samples using such excitation sources. Comparison is drawn with the emission when excited using broad-band sources at shorter wavelengths (340 nm). Here, 404 nm is shown to selectively excite the larger C<sub><i>x</i></sub>H<sub><i>y</i></sub> polycyclic aromatic hydrocarbons (PAH) commonly found as minor constituents of gasoline, mainly for (<i>x, y</i>) ≥ (14, 10). Both Stokes and anti-Stokes shifted emission was observed in all the gasoline tested and in some PAH samples. The fluorescence is usually superimposed on Raman scattered laser light, arising from vibrations within the basic benzene structures. The fluorescence features of the gasoline samples tested were found to be broadly similar, but, because of its distinctive spectroscopic features, the fluorescence arising from benzo(a)pyrene was found to be one of the main variants. More generally, principal component analysis of the spectra was able to highlight differences between both the sample provenance and the fuel variety.

PDF Article
More Like This
Fiber-optic laser-induced fluorescence probe for the detection of environmental pollutants

J. Bublitz, M. Dickenhausen, M. Grätz, S. Todt, and W. Schade
Appl. Opt. 34(18) 3223-3233 (1995)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.