Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 57,
  • Issue 5,
  • pp. 538-544
  • (2003)

Diffusional Fluorescence Quenching of Aromatic Hydrocarbons

Not Accessible

Your library or personal account may give you access

Abstract

The quenching of the fluorescence of five aromatic hydrocarbons by three halogenated organics and by molecular oxygen has been measured. Both fluorescence intensity and fluorescence lifetime measurements have been employed to validate results and interpretation; linear Stern–Volmer analyses are shown to apply throughout. The fluorescence quenching rate constant of molecular oxygen for the five aromatic hydrocarbons is essentially equivalent to the diffusion rate constant independent of the fluorophore excitation energy. The halogenated organic–fluorophore rate constants vary by a factor of 965 and are shown to correlate roughly with the energy difference between the quencher and fluorophore excited electronic states in accord with a standard model of quantum two-level mixing. The value of the coupling interaction energy is ~2500 cm<sup>-1</sup>.

PDF Article
More Like This
Subpicogram laser-induced fluorescence detection of aromatic hydrocarbons in vapor-deposited aromatic crystals

Charles F. Pace and Jon R. Maple
J. Opt. Soc. Am. B 2(9) 1582-1588 (1985)

Detection of oxygen by fluorescence quenching

M. E. Cox and B. Dunn
Appl. Opt. 24(14) 2114-2120 (1985)

Fluorescence quenching by polystyrene microspheres in UV-visible and NIR tissue-simulating phantoms

Karthik Vishwanath, Wei Zhong, Melanie Close, and Mary-Ann Mycek
Opt. Express 14(17) 7776-7788 (2006)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.