Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 57,
  • Issue 9,
  • pp. 1162-1166
  • (2003)

Multi-Analyte Calibration Curve for High-Performance Liquid Chromatography with an Inductively Coupled Plasma Carbon Emission Detector

Not Accessible

Your library or personal account may give you access

Abstract

A liquid chromatography system with an inductively coupled plasma detector is used to prepare a single calibration curve that is useful for multiple analytes. The detector monitors the atomic emission from carbon at 193.09 nm. Hence, the analytes need not exhibit appreciable molar absorptivity or native fluorescence. Since the carbon signal is independent of molecular structure, the sensitivities for different compounds are similar as long as nebulization efficiencies are comparable. In fact, with a suitable internal standard, no calibration curve is necessary. The capability of the system is demonstrated with a test mixture of nine amino acids separated with a C30 reversed-phase column and a 20 mM phosphate buffered mobile phase. The system provides a detection limit of 30 ng carbon. A multi-analyte calibration curve is prepared with 135 distinct measurements: each of nine analytes, at five different concentrations, repeated in triplicate. The average relative standard deviation for 27 measurements of different amino acids at a given concentration is 2.5%. Clearly, a single analyte will suffice for the calibration of all nine test compounds. Similarly, the internal standard method provides an average percent error of 2.0% for the determination of 45 different amino acid concentrations using only a single replicate for each sample.

PDF Article
More Like This
Ultraviolet laser microplasma–gas chromatography detector: detection of species-specific fragment emission

Randy J. Locke, Jeffrey B. Morris, Brad E. Forch, and Andrzej W. Miziolek
Appl. Opt. 29(33) 4987-4992 (1990)

Quantitative analysis of Fuller’s earth using laser-induced breakdown spectroscopy and inductively coupled plasma/optical emission spectroscopy

I. Rehan, M. Z. Khan, K. Rehan, S. Sultana, M. U. Rehman, R. Muhammad, M. Ikram, and H. Anwar
Appl. Opt. 58(16) 4227-4233 (2019)

Application of laser-induced breakdown spectroscopy for total carbon quantification in soil samples

Krishna K. Ayyalasomayajula, Fang Yu-Yueh, Jagdish P. Singh, Dustin L. McIntyre, and Jinesh Jain
Appl. Opt. 51(7) B149-B154 (2012)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved