Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 58,
  • Issue 2,
  • pp. 152-159
  • (2004)

Residual Stress Mapping of Epoxy Molding Compound in a Ball Grid Array Microelectronic Package Using a Fluorescent Sensor

Not Accessible

Your library or personal account may give you access

Abstract

Thermal residual stresses developed at the time of semiconductor molding may cause serious problems both in their structural and functional performance; therefore, residual stress assessment in microelectronic devices is a mandatory evaluation step. Fluorescence piezo-spectroscopy was applied to evaluate residual stresses with a microscopic resolution inside a semiconductor encapsulant. In order to obtain reliable stress information, a low fraction of alumina powder, as a fluorescent sensor, was embedded into the silica/epoxy molding compound. Residual stress was transferred from the molding compound to the alumina phase and could be monitored by recording the shift of the sharp and intense fluorescence spectrum of Cr<sup>3+</sup> in alumina. Two-dimensional residual-stress maps, recorded near the edge of the silicon chip, revealed a strong stress concentration in the molding compound. Experimental results were compared with calculations obtained by the linear finite element method. Such a comparison showed that the experimental stress values were systematically larger than the corresponding calculated values due to local delamination at the chip edge.

PDF Article
More Like This
Prediction model of residual stress during precision glass molding of optical lenses

Hang Fu, Changxi Xue, Yue Liu, Bo Cao, Changfu Lang, and Chao Yang
Appl. Opt. 61(5) 1194-1202 (2022)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.