Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 59,
  • Issue 3,
  • pp. 280-285
  • (2005)

Method for Quantitative Determination of Spatial Polymer Distribution in Alginate Beads Using Raman Spectroscopy

Not Accessible

Your library or personal account may give you access

Abstract

A new method based on Raman spectroscopy is presented for noninvasive, quantitative determination of the spatial polymer distribution in alginate beads of approximately 4 mm diameter. With the experimental setup, a two-dimensional image is created along a thin measuring line through the bead comprising one spatial and one spectral dimension. For quantitative analysis of the Raman spectra, the method of indirect hard modeling was applied to make use of the information contained in the entire recorded spectra. For quantification of the alginate signals from within the beads, a calibration curve acquired from sodium alginate solutions was used after it was shown that only negligible differences occur between signals from alginate solutions and alginate gels. The distribution of alginate over the bead gel matrix was acquired with high spatial (51 μm) and time (12 s) resolution. The inhomogeneous distribution obtained using the new measuring technique is qualitatively in excellent agreement with data from the literature. In contrast to known measuring techniques, correct quantitative information about the spatial polymer distribution within the matrix was derived. It gave an alginate mass fraction of approximately 0.045 g/g at the edges and 0.02 g/g in the center of the beads. Next to the determination of mere polymer concentrations, the excellent time resolution of the presented method will enable investigation of the dynamic process of gel formation and it will also serve as a basis for investigation of mass transfer of small diffusing molecules in alginate matrices.

PDF Article
More Like This
Quantitative analysis of essential oils of Thymus daenensis using laser-induced fluorescence and Raman spectroscopy

H. Khoshroo, H. Khadem, M. Bahreini, S. H. Tavassoli, and J. Hadian
Appl. Opt. 54(32) 9533-9539 (2015)

Quantitative determination of dynamical properties using coherent spatial frequency domain imaging

Tyler B. Rice, Soren D. Konecky, Amaan Mazhar, David J. Cuccia, Anthony J. Durkin, Bernard Choi, and Bruce J. Tromberg
J. Opt. Soc. Am. A 28(10) 2108-2114 (2011)

Experimental study of the mechanisms leading to the formation of glistenings in intraocular lenses by Raman spectroscopy

Giulia Rusciano, Angela Capaccio, Giuseppe Pesce, and Antonio Sasso
Biomed. Opt. Express 10(4) 1870-1881 (2019)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.