Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 59,
  • Issue 5,
  • pp. 575-583
  • (2005)

Enhancement of Infrared Spectral Images for Maximizing Chemical Information by Minimizing Baseline Interferences

Not Accessible

Your library or personal account may give you access

Abstract

The popularity of spectral images in many areas of analysis has greatly increased during the last decade due to the development of charge-coupled device (CCD) and infrared sensitive cameras. Large amounts of spatial information can be obtained in short periods of time. The general goal in analytical chemistry is to convert spectral images into chemical images, which show the spatial locations of various chemical components. Self-modeling multivariate curve resolution methods can be used to extract pure component spectra from the mixture spectra in images and produce chemical images. However, there is a difficulty in processing infrared spectral images due to large pixel-to-pixel baseline variations. Herein, a method for minimizing baseline interferences using fast Fourier transform (FFT) filtering in both the spectral and spatial domains is discussed. The methodology is demonstrated on a microscopic sample of butter contaminated with non-pathogenic <i>E. coli</i> and on a cross-sectional sample of rabbit aorta containing plaque. The processing to reduce baseline effects improved the spatial resolution without compromising the spectral resolution.

PDF Article
More Like This
Broadband near-infrared hyperspectral single pixel imaging for chemical characterization

Paul Gattinger, Jakob Kilgus, Ivan Zorin, Gregor Langer, Ramin Nikzad-Langerodi, Christian Rankl, Martin Gröschl, and Markus Brandstetter
Opt. Express 27(9) 12666-12672 (2019)

Compositional prior information in computed infrared spectroscopic imaging

Bradley Deutsch, Rohith Reddy, David Mayerich, Rohit Bhargava, and P. Scott Carney
J. Opt. Soc. Am. A 32(6) 1126-1131 (2015)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.