Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 60,
  • Issue 10,
  • pp. 1167-1173
  • (2006)

Modified Dual Lifetime Referencing Method for Simultaneous Optical Determination and Sensing of Two Analytes

Not Accessible

Your library or personal account may give you access

Abstract

Simultaneous fluorometric sensing of two analytes becomes possible using a modified dual lifetime referencing (m-DLR) method. In this scheme, two luminescent indicators are needed that have overlapping absorption and emission spectra but largely different decay times. They are excited by a single light source, and both emissions are measured simultaneously. In the frequency domain m-DLR method, the phase of the short-lived fluorescence of a first indicator is referenced against that of the long-lived luminescence of the second indicator. The analytical information is obtained by measurement of the phase shifts at two modulation frequencies. The method is demonstrated to work for the case of dually sensing oxygen and carbon dioxide. It benefits from simple instrumentation and optical setup. The approach is perceived to be of wide applicability. Examples include (1) analysis of two luminescent analytes, (2) analytical determinations that make use of two probes, and (3) sensing of two species such as carbon dioxide and oxygen (as demonstrated here), or oxygen and chlorophyll, provided the luminophores meet the condition of having largely different decay times and overlapping absorption and emission spectra.

PDF Article
More Like This
Optical sensor for dual sensing of oxygen and carbon dioxide based on sensing films coated on filter paper

Cheng-Shane Chu and Jhih-Jheng Syu
Appl. Opt. 56(4) 1225-1231 (2017)

Capillary waveguide optrodes: an approach to optical sensing in medical diagnostics

Max E. Lippitsch, Sonja Draxler, Dietmar Kieslinger, Hartmut Lehmann, and Bernhard H. Weigl
Appl. Opt. 35(19) 3426-3431 (1996)

Ratiometric optical fiber sensor for dual sensing of copper ion and dissolved oxygen

Cheng-Shane Chu and Chih-Yung Chuang
Appl. Opt. 54(36) 10659-10665 (2015)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved