Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 60,
  • Issue 4,
  • pp. 398-406
  • (2006)

Perturbation-Correlation Moving-Window Two-Dimensional Correlation Spectroscopy

Not Accessible

Your library or personal account may give you access

Abstract

A new method of analysis, perturbation-correlation moving-window two-dimensional (PCMW2D) correlation spectroscopy, is proposed. For a spectral data set collected under an external perturbation, this method provides a pair of synchronous and asynchronous two-dimensional correlation spectra plotted on a plane between a spectral variable (e.g., wavenumber) axis and a perturbation variable (e.g., temperature) axis. One of the advantages of this new correlation analysis method is that complicated spectral variation along the perturbation direction can be monitored. It has been found that the synchronous and asynchronous PCMW2D correlation spectra are similar to the first perturbation derivative and negative second perturbation derivative spectra of the original data, respectively. To demonstrate the potential of PCMW2D correlation spectroscopy, it has been applied to temperature-dependent infrared (IR) spectra of a poly(vinyl alcohol) (PVA) film. The thermal behavior of the PVA film has been revealed by the PCMW2D correlation analysis. Two characteristic cross-peaks are observed in the synchronous PCMW2D correlation spectra generated from the temperature-dependent IR spectra between the crystalline phase C–O stretching band at 1141 cm<sup>−1</sup> and the melting temperature of 209 °C and between the amorphous phase C–O stretching band at 1095 cm<sup>−1</sup> and another specific temperature of 233 °C. This specific temperature of 233 °C corresponds to the thermal degradation temperature due to the elimination of the hydroxyl group attached to the main chain.

PDF Article
More Like This
Quantitative analysis method of Panax notoginseng based on thermal perturbation terahertz two-dimensional correlation spectroscopy

Huo Zhang, Lanjuan Huang, Chuanpei Xu, Zhi Li, Xianhua Yin, Tao Chen, Yuee Wang, and Guanglei Li
Appl. Opt. 62(19) 5306-5316 (2023)

Fast two-dimensional fluorescence correlation spectroscopy technique for tea quality detection

Yongjiang Dong, Hao Lu, Zhengdong Yong, Chunsheng Yan, and Sailing He
Appl. Opt. 54(23) 7032-7036 (2015)

Correlated spatially resolved two-dimensional electronic and linear absorption spectroscopy

Megan A. Steves, Hongjun Zheng, and Kenneth L. Knappenberger
Opt. Lett. 44(8) 2117-2120 (2019)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved