Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 60,
  • Issue 7,
  • pp. 773-780
  • (2006)

Characterization and Quantitation of a Tertiary Mixture of Salts by Raman Spectroscopy in Simulated Hydrothermal Vent Fluid

Not Accessible

Your library or personal account may give you access

Abstract

This article will demonstrate that Raman spectroscopy can be a useful tool for monitoring the chemical composition of hydrothermal vent fluids in the deep ocean. Hydrothermal vent systems are difficult to study because they are commonly found at depths greater than 1000 m under high pressure (200-300 bar) and venting fluid temperatures are up to 400 °C. Our goal in this study was to investigate the use of Raman spectroscopy to characterize and quantitate three Raman-active salts that are among the many chemical building blocks of deep ocean vent chemistry. This paper presents initial sampling and calibration studies as part of a multiphase project to design, develop, and deploy a submersible deep sea Raman instrument for <i>in situ</i> analysis of hydrothermal vent systems. Raman spectra were collected from designed sets of seawater solutions of carbonate, sulfate, and nitrate under different physical conditions of temperature and pressure. The role of multivariate analysis techniques to preprocess the spectral signals and to develop optimal calibration models to accurately estimate the concentrations of a set of mixtures of simulated seawater are discussed. The effects that the high-pressure and high-temperature environment have upon the Raman spectra of the analytes were also systematically studied. Information gained from these lab experiments is being used to determine design criteria and performance attributes for a deployable deep sea Raman instrument to study hydrothermal vent systems <i>in situ</i>.

PDF Article
More Like This
Development of a compact underwater laser-induced breakdown spectroscopy (LIBS) system and preliminary results in sea trials

Jinjia Guo, Yuan Lu, Kai Cheng, Jiaojian Song, Wangquan Ye, Nan Li, and Ronger Zheng
Appl. Opt. 56(29) 8196-8200 (2017)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.