Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 61,
  • Issue 10,
  • pp. 1057-1062
  • (2007)

Remote Monitoring of a Multi-Component Liquid-Phase Organic Synthesis by Infrared Emission Spectroscopy: The Recovery of Pure Component Emissivities by Band-Target Entropy Minimization

Not Accessible

Your library or personal account may give you access

Abstract

A liquid-phase cycloaddition reaction near ambient temperature involving dimethyl acetylenedicarboxylate (DMAD) and cyclopentadiene (CP) as reactants was measured using a conventional Fourier transform infrared (FT-IR) spectrometer with an emission accessory. Two semi-batch experiments were performed and a total of 55 spectra were collected using a DTGS detector. Band-target entropy minimization (BTEM), a pure component spectral reconstruction technique, was applied to analyze the data set to retrieve the pure component emission spectrum from the reaction system. The estimated emission spectra of the solvent chloroform, DMAD, CP, and product, namely dimethyl bicyclo[2.2.1]-2,5-heptadiene-2,3-dicarboxylate, were all reconstructed with rather good quality. The estimated emission spectra are similar to independent FT-IR spectra of the same cycloaddition reaction. Using a least squares fit, the relative concentration profiles of the species are obtained. Because this appears to be the first time that a liquid-phase reaction has been monitored by infrared emission spectroscopy, further improvements and opportunities for general multi-phase liquid reaction monitoring are discussed.

PDF Article
More Like This
Infrared emission spectra from a heterogeneous catalyst system in reaction conditions. 1: Description of the microreactor assembly

P. C. M. van Woerkom, P. Blok, H. J. van Veenendaal, and R. L. de Groot
Appl. Opt. 19(15) 2546-2550 (1980)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.