Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 61,
  • Issue 10,
  • pp. 1123-1127
  • (2007)

Deep Subsurface Raman Spectroscopy of Turbid Media by a Defocused Collection System

Not Accessible

Your library or personal account may give you access

Abstract

A simple procedure for the recovery of deep subsurface Raman spectra in stratified turbid samples by defocusing a conventional Raman instrument is presented. The method is based on effects present with spatially offset Raman spectroscopy (SORS) and, although not as efficient as the standard SORS approach, it permits a simple way of recovering subsurface Raman spectra from less challenging samples. Demonstration of the effect is performed using a standard SORS device and a commercial Raman instrument on the noninvasive measurement of paracetamol tablets held within a nontransparent white plastic bottle.

PDF Article
More Like This
DMD-based software-configurable spatially-offset Raman spectroscopy for spectral depth-profiling of optically turbid samples

Zhiyu Liao, Faris Sinjab, Graham Gibson, Miles Padgett, and Ioan Notingher
Opt. Express 24(12) 12701-12712 (2016)

Hyperspectral spatially offset Raman spectroscopy in a microfluidic channel

Moritz Matthiae and Anders Kristensen
Opt. Express 27(3) 3782-3790 (2019)

Three-dimensional imaging of objects embedded in turbid media with fluorescence and Raman spectroscopy

Jun Wu, Yang Wang, Lev Perelman, Irvine Itzkan, Ramachandra R. Dasari, and Michael S. Feld
Appl. Opt. 34(18) 3425-3430 (1995)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.