OSA's Digital Library

Applied Spectroscopy

Applied Spectroscopy


  • Vol. 61, Iss. 2 — Feb. 1, 2007
  • pp: 204–211

Variability in Surface Infrared Reflectance of Thirteen Nitrile Rubber Gloves at Key Wavelengths for Analysis of Captan

R. N. Phalen and Shane S. Que Hee

Applied Spectroscopy, Vol. 61, Issue 2, pp. 204-211 (2007)

View Full Text Article

Acrobat PDF (167 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


The aim of this study was to investigate the surface variability of 13 powder-free, unlined, and unsupported nitrile rubber gloves using attenuated total reflection Fourier transform infrared (ATR-FT-IR) spectrophotometry at key wavelengths for analysis of captan contamination. The within-glove, within-lot, and between-lot variability was measured at 740, 1124, 1252, and 1735 cm−1, the characteristic captan reflectance minima wavelengths. Three glove brands were assessed after conditioning overnight at relative humidity (RH) values ranging from 2 ± 1 to 87 ± 4% and temperatures ranging from −8.6 ± 0.7 to 59.2 ± 0.9 °C. For all gloves, 1735 cm−1 provided the lowest background absorbance and greatest potential sensitivity for captan analysis on the outer glove surface: absorbances ranged from 0.0074 ± 0.0005 (Microflex) to 0.0195 ± 0.0024 (SafeSkin); average within-glove coefficients of variation (CV) ranged from 2.7% (Best, range 0.9–5.3%) to 10% (SafeSkin, 1.2–17%); within-glove CVs greater than 10% were for one brand (SafeSkin); within-lot CVs ranged from 2.8% (Best N-Dex) to 28% (SafeSkin Blue); and between-lot variation was statistically significant (p ≤ 0.05) for all but two SafeSkin lots. The RH had variable effects dependent on wavelength, being minimal at 1735, 1252, and 1124 cm−1 and highest at 3430 cm−1 (O–H stretch region). There was no significant effect of temperature conditioning. Substantial within-glove, within-lot, and between-lot variability was observed. Thus, surface analysis using ATR-FT-IR must treat glove brands and lots as different. ATR-FT-IR proved to be a useful real-time analytical tool for measuring glove variability, detecting surface humidity effects, and choosing selective and sensitive wavelengths for analysis of nonvolatile surface contaminants.

R. N. Phalen and Shane S. Que Hee, "Variability in Surface Infrared Reflectance of Thirteen Nitrile Rubber Gloves at Key Wavelengths for Analysis of Captan," Appl. Spectrosc. 61, 204-211 (2007)

Sort:  Journal  |  Reset


References are not available for this paper.

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited