Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 62,
  • Issue 12,
  • pp. 1344-1348
  • (2008)

New Technique for the Direct Analysis of Food Powders Confined in a Small Hole Using Transversely Excited Atmospheric CO2 Laser-Induced Gas Plasma

Not Accessible

Your library or personal account may give you access

Abstract

Taking advantage of the differences between the interactions of transversely excited atmospheric (TEA) CO<sub>2</sub> lasers with metal and with organic powder, a new technique for the direct analysis of food powder samples has been developed. In this technique, the powder samples were placed into a small hole with a diameter of 2 mm and a depth of 3 mm and covered by a metal mesh. The TEA CO<sub>2</sub> laser (1500 mJ, 200 ns) was focused on the powder sample surfaces, passing through the metal mesh, at atmospheric pressure in nitrogen gas. It is hypothesized that the small hole functions to confine the powder particles and suppresses the blowing-off of sample, while the metal mesh works as the source of electrons to initiate the strong gas breakdown plasma. The confined powder particles are then ablated by laser irradiation and the ablated particles move into the strong gas breakdown plasma region to be atomized and excited; this method cannot be applied for the case of Nd:YAG lasers because in such case the metal mesh itself was ablated by the laser irradiation. A quantitative analysis of a milk powder sample containing different concentrations of Ca was successfully demonstrated, resulting in a good linear calibration curve with high precision.

PDF Article
More Like This
Comparative study of Nd:YAG laser-induced breakdown spectroscopy and transversely excited atmospheric CO2 laser-induced gas plasma spectroscopy on chromated copper arsenate preservative-treated wood

Ali Khumaeni, Zener Sukra Lie, Hideaki Niki, Yong Inn Lee, Kazuyoshi Kurihara, Motoomi Wakasugi, Touru Takahashi, and Kiichiro Kagawa
Appl. Opt. 51(7) B121-B129 (2012)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved