Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 65,
  • Issue 9,
  • pp. 1017-1023
  • (2011)

Identification of Natural Dyes on Laboratory-Dyed Wool and Ancient Wool, Silk, and Cotton Fibers Using Attenuated Total Reflection (ATR) Fourier Transform Infrared (FT-IR) Spectroscopy and Fourier Transform Raman Spectroscopy

Not Accessible

Your library or personal account may give you access

Abstract

Attenuated total reflection (ATR) infrared and Fourier transform (FT) Raman spectra were obtained from wool threads dyed in the laboratory with natural dyes used in antiquity, following a procedure similar to ancient methods for dyeing wool. The ATR spectra were primarily dominated by the signals of the wool, making it difficult to identify the dye on the fibers only by visual inspection of the infrared spectrum. However, the Raman spectra showed more significant characteristics attributable to the dyes as previously studied in the literature on modern synthetic dyes. A library-search method was thus applied to the second derivatives of both the ATR and Raman spectra to verify the possibility of identifying the dye. Two libraries were constructed, one consisting of the ATR spectra of undyed wool (raw, washed, and mordanted) and the transmission spectra of pure dyes and the other consisting of the Raman spectra of undyed wool and of pure dyes. Correlation and first-derivative correlation search algorithms were used. The results presented here suggest that the two types of spectroscopy are complementary in this kind of work, allowing the almost complete identification of historic dyes on wool. In fact, through the combined use of the two searches, most dyes were identified with a good index of similarity and within the first five hits. Only for annatto was identification totally impossible using either technique. Subsequently the same method was applied to wool, silk, and cotton threads taken from ancient Caucasian and Chinese textiles.

PDF Article
More Like This
Use of attenuated total reflectance Fourier transform infrared spectroscopy to monitor the development of lipid aggregate structures

Mateo R. Hernandez, Elyse N. Towns, Terry C. Ng, Brian C. Walsh, Richard Osibanjo, Atul N. Parikh, and Donald P. Land
Appl. Opt. 51(15) 2842-2846 (2012)

Attenuated total reflectance spectroscopy with chirped-pulse upconversion

Hideto Shirai, Constance Duchesne, Yuji Furutani, and Takao Fuji
Opt. Express 22(24) 29611-29616 (2014)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.