OSA's Digital Library

Applied Spectroscopy

Applied Spectroscopy

| PUBLISHED BY SAS — AVAILABLE FROM SAS AND OSA

  • Vol. 66, Iss. 10 — Oct. 1, 2012
  • pp: 1136–1144

Metal Stearate Distributions in Modern Artists' Oil Paints: Surface and Cross-Sectional Investigation of Reference Paint Films Using Conventional and Synchrotron Infrared Microspectroscopy

Gillian Osmond, Jaap J. Boon, Ljiljana Puskar, and John Drennan

Applied Spectroscopy, Vol. 66, Issue 10, pp. 1136-1144 (2012)


View Full Text Article

Acrobat PDF (1639 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

Zinc oxide is a prevalent industrial-age pigment that readily reacts with fatty acids in oil-based paints to form zinc carboxylates. Zinc stearate aggregates are associated with deterioration in late nineteenth and twentieth century paintings. The current study uses both conventional and synchrotron Fourier transform infrared spectroscopy (FT-IR) to investigate metal carboxylate composition in a range of naturally aged artists' oil paints and reference paint film draw-downs. The paints contain zinc oxide alone or in combination with lead white, titanium white, and aluminum stearate and are prepared with linseed and safflower oils. Attenuated total reflectance (ATR)-FT-IR using the conventional source identifies marked differences in carboxylate profiles between exposed and protected surfaces in a large number of samples. Synchrotron FT-IR microspectroscopy of thin paint cross-sections maps metal carboxylate distributions at high spatial resolution and resolves broad concentration gradients and micrometer-scale phase separation of carboxylate species. Aluminum stearate, a common paint additive, is found to influence the distribution of zinc carboxylates more strongly than pigment composition or oil type. The presence of aluminum stearate results in higher concentrations and more pronounced separation of saturated C16 and C18 chain zinc carboxylates in the margin of paint nearest the polyester substrate. The presence of aluminum stearate in association with zinc oxide has a clear influence on zinc carboxylate formation and distribution, with potential implications for long term stability of vulnerable paintings.

Citation
Gillian Osmond, Jaap J. Boon, Ljiljana Puskar, and John Drennan, "Metal Stearate Distributions in Modern Artists' Oil Paints: Surface and Cross-Sectional Investigation of Reference Paint Films Using Conventional and Synchrotron Infrared Microspectroscopy," Appl. Spectrosc. 66, 1136-1144 (2012)
http://www.opticsinfobase.org/as/abstract.cfm?URI=as-66-10-1136


Sort:  Journal  |  Reset

References

References are not available for this paper.

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited