Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 66,
  • Issue 10,
  • pp. 1163-1170
  • (2012)

Transmission Resonance Raman Spectroscopy: Experimental Results Versus Theoretical Model Calculations

Not Accessible

Your library or personal account may give you access

Abstract

A laser spectroscopic technique is described that combines transmission and resonance-enhanced Raman inelastic scattering together with low laser power (< 30 mW) and good spatial resolution (< 200 ?m) as operational features. The monitoring of the transmitted inelastic scattering provides an increased signal-to-noise ratio because the low fluorescence background and, on the other hand, the resonant character of the laser excitation, leads to enhanced analytical sensitivity. The spectroscopic technique was applied to investigate the carotenoid content (specifically the ?-carotene concentration) of distinct samples that included fruits, reaching a detection limit of the order <i>of hundreds of picograms</i> in solid samples, which is below the level needed for typical food control analysis. Additional features of the present development are direct sampling, noninvasive character, and fast analysis that is not time consuming. From a theoretical point of view, a model for the Raman signal dependence on the sample thickness is also presented. Essentially, the model considers the sample to be homogeneous and describes the underlying physics using only three parameters: the Raman cross-section, the laser-radiation attenuation cross-section, and the Raman signal attenuation cross-section. The model was applied successfully to describe the sample-size dependence of the Raman signal in both ?-carotene standards and carrot roots. The present technique could be useful for direct, fast, and nondestructive investigations in food quality control and analytical or physiological studies of animal and human tissues.

PDF Article
More Like This
Gold-coated AFM tips for tip-enhanced Raman spectroscopy: theoretical calculation and experimental demonstration

Lingyan Meng, Tengxiang Huang, Xiang Wang, Shu Chen, Zhilin Yang, and Bin Ren
Opt. Express 23(11) 13804-13813 (2015)

Theoretical model predictions and experimental results for a wavelength switchable Tm:YAG laser

Yanxiong Niu, Caili Wang, Wenwen Liu, Haisha Niu, Bing Xu, and Da Man
Appl. Opt. 53(19) 4359-4362 (2014)

Stokes mode Raman random lasing in a fully biocompatible medium

Venkata Siva Gummaluri, S. R. Krishnan, and C. Vijayan
Opt. Lett. 43(23) 5865-5868 (2018)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.