OSA's Digital Library

Applied Spectroscopy

Applied Spectroscopy

| PUBLISHED BY SAS — AVAILABLE FROM SAS AND OSA

  • Vol. 67, Iss. 12 — Dec. 1, 2013
  • pp: 1395–1400

Optimized Data Analysis Algorithm for On-Site Chemical Identification Using a Hand-Held Attenuated Total Reflection Fourier Transform Infrared (ATR FT-IR) Spectrometer

Izhar Ron, Amalia Zaltsman, and Shai Kendler

Applied Spectroscopy, Vol. 67, Issue 12, pp. 1395-1400 (2013)


View Full Text Article

Acrobat PDF (612 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

On-site identification of organic compounds in the presence of interfering materials using a field-portable attenuated total reflection Fourier transform infrared (ATR FT-IR) spectrometer is presented. Identification is based on an algorithm that compares the analyte's infrared absorption spectrum with the reference spectra. The comparison is performed at several predetermined frequencies, and a similarity value (distance) between the measured and the reference spectra is calculated either at each frequency individually, or, alternatively, the average distance for all frequencies is calculated. The examined frequencies are selected to give the best contrast between the target materials of interest. In this study, the algorithm was optimized to identify three common chemical warfare agents (CWAs): O-ethyl S-[2-(diisopropylamino)ethyl] methylphosphonothioic acid (VX), sarin (GB), and sulfur mustard (bis(2-chloroethyl) sulfide) (HD), in the presence of field-related interfering materials (fuels, water, and dust). Receiver operating characteristics analysis was performed in order to determine the probabilities for detection (PD) and for false alerts (PF). Challenging the algorithm with a set of data that contains mixtures of CWAs and interfering materials resulted in PD of 90% and PF of 0%, 0%, and 1% for VX, GB, and HD, respectively, using the average distance approach, which was found to be much more effective than analyzing each frequency individually. This finding was validated for all possible combinations of 2-7 peaks per material. It is suggested that this algorithm provides a reliable mean for the identification of a predetermined set of target analytes and interfering materials.

Virtual Issues
Vol. 9, Iss. 2 Virtual Journal for Biomedical Optics

Citation
Izhar Ron, Amalia Zaltsman, and Shai Kendler, "Optimized Data Analysis Algorithm for On-Site Chemical Identification Using a Hand-Held Attenuated Total Reflection Fourier Transform Infrared (ATR FT-IR) Spectrometer," Appl. Spectrosc. 67, 1395-1400 (2013)
http://www.opticsinfobase.org/as/abstract.cfm?URI=as-67-12-1395

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited