OSA's Digital Library

Applied Spectroscopy

Applied Spectroscopy


  • Vol. 67, Iss. 12 — Dec. 1, 2013
  • pp: 1463–1472

Improved Modeling of In Vivo Confocal Raman Data Using Multivariate Curve Resolution (MCR) Augmentation of Ordinary Least Squares Models

Thomas M. Hancewicz, Chunhong Xiao, Shuliang Zhang, and Manoj Misra

Applied Spectroscopy, Vol. 67, Issue 12, pp. 1463-1472 (2013)

View Full Text Article

Acrobat PDF (491 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


In vivo confocal Raman spectroscopy has become the measurement technique of choice for skin health and skin care related communities as a way of measuring functional chemistry aspects of skin that are key indicators for care and treatment of various skin conditions. Chief among these techniques are stratum corneum water content, a critical health indicator for severe skin condition related to dryness, and natural moisturizing factor components that are associated with skin protection and barrier health. In addition, in vivo Raman spectroscopy has proven to be a rapid and effective method for quantifying component penetration in skin for topically applied skin care formulations. The benefit of such a capability is that noninvasive analytical chemistry can be performed in vivo in a clinical setting, significantly simplifying studies aimed at evaluating product performance. This presumes, however, that the data and analysis methods used are compatible and appropriate for the intended purpose. The standard analysis method used by most researchers for in vivo Raman data is ordinary least squares (OLS) regression. The focus of work described in this paper is the applicability of OLS for in vivo Raman analysis with particular attention given to use for non-ideal data that often violate the inherent limitations and deficiencies associated with proper application of OLS. We then describe a newly developed in vivo Raman spectroscopic analysis methodology called multivariate curve resolution-augmented ordinary least squares (MCR-OLS), a relatively simple route to addressing many of the issues with OLS. The method is compared with the standard OLS method using the same in vivo Raman data set and using both qualitative and quantitative comparisons based on model fit error, adherence to known data constraints, and performance against calibration samples. A clear improvement is shown in each comparison for MCR-OLS over standard OLS, thus supporting the premise that the MCR-OLS method is better suited for general-purpose multicomponent analysis of in vivo Raman spectral data. This suggests that the methodology is more readily adaptable to a wide range of component systems and is thus more generally applicable than standard OLS.

Virtual Issues
Vol. 9, Iss. 2 Virtual Journal for Biomedical Optics

Thomas M. Hancewicz, Chunhong Xiao, Shuliang Zhang, and Manoj Misra, "Improved Modeling of In Vivo Confocal Raman Data Using Multivariate Curve Resolution (MCR) Augmentation of Ordinary Least Squares Models," Appl. Spectrosc. 67, 1463-1472 (2013)

Sort:  Journal  |  Reset


References are not available for this paper.

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited