Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 67,
  • Issue 7,
  • pp. 703-708
  • (2013)

Derivative Spectrophotometry for the Determination of Faropenem in the Presence of Degradation Products: An Application for Kinetic Studies

Not Accessible

Your library or personal account may give you access

Abstract

A simple and selective derivative spectrophotometric method was developed for the quantitative determination of faropenem in pure form and in pharmaceutical dosage. The method is based on the zero-crossing effect of first-derivative spectrophotometry (? = 324 nm), which eliminates the overlapping effect caused by the excipients present in the pharmaceutical preparation, as well as degradation products, formed during hydrolysis, oxidation, photolysis, and thermolysis. The method was linear in the concentration range 2.5-300 ?g/mL (<i>r</i> = 0.9989) at ? = 341 nm; the limits of detection and quantitation were 0.16 and 0.46 ?g/mL, respectively. The method had good precision (relative standard deviation from 0.68 to 2.13%). Recovery of faropenem ranged from 97.9 to 101.3%. The first-order rate constants of the degradation of faropenem in pure form and in pharmaceutical dosage were determined by using first-derivative spectrophotometry. A statistical comparison of the validation results and the observed rate constants for faropenem degradation with these obtained with the high-performance liquid chromatography method demonstrated that both were compatible.

PDF Article
More Like This
Derivative Absorption and Emission Spectrophotometry

F. Grum, D. Paine, and L. Zoeller
Appl. Opt. 11(1) 93-98 (1972)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.