OSA's Digital Library

Applied Spectroscopy

Applied Spectroscopy

| PUBLISHED BY SAS — AVAILABLE FROM SAS AND OSA

  • Vol. 67, Iss. 8 — Aug. 1, 2013
  • pp: 903–912

Characterization of Novel Lithium Battery Cathode Materials by Spectroscopic Methods: The Li5+xFeO4 System

Victor A. Maroni, Christopher S. Johnson, Shawn C.M. Rood, A. Jeremy. Kropf, and Dean A. Bass

Applied Spectroscopy, Vol. 67, Issue 8, pp. 903-912 (2013)


View Full Text Article

Acrobat PDF (1307 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

The novel, lithium-rich oxide-phase Li5FeO4 (LFO) could, in theory, deliver a specific capacity >900 mAh/g when deployed as a cathode or cathode precursor in a battery with a lithium-based anode. However, research results to date on LFO indicate that less than one of the five Li+ cations can be reversibly de-intercalated/re-intercalated during repetitive charging and discharging cycles. In the present research, the system Li5+xFeO4 with x values in the range of 0.0-2.0 was investigated by a combination of Raman and X-ray absorption spectroscopic methods supported by X-ray diffraction (XRD) analysis in order to determine if the Li5FeO4 lattice would accommodate additional Li+ ions, with concomitant lowering of the valence on the FeIII cations. Both the Raman phonon spectra and the XRD patterns were invariant for all values of x, strongly indicating that additional Li+ did not enter the Li5FeO4 lattice. Also, Raman spectral results and high-resolution synchrotron XRD data revealed the presence of second-phase Li2O in all samples with x greater than 0.0. Synchrotron X-ray absorption spectroscopy at the Fe k? edge performed on the sample with a Li-Fe ratio of 7.0 (i.e., x = 2.0) showed no evidence for the presence of FeII. This resistance to accepting more lithium into the Li5FeO4 structure is attributed to the exceedingly stable nature of high-spin FeIII in tetrahedral “FeIIIO4” structural units of Li5FeO4. Partial substitution of the FeIII with other cations could provide a path toward increasing the reversible Li+ content of Li5xFeO4-type phases.

Citation
Victor A. Maroni, Christopher S. Johnson, Shawn C.M. Rood, A. Jeremy. Kropf, and Dean A. Bass, "Characterization of Novel Lithium Battery Cathode Materials by Spectroscopic Methods: The Li5+xFeO4 System," Appl. Spectrosc. 67, 903-912 (2013)
http://www.opticsinfobase.org/as/abstract.cfm?URI=as-67-8-903

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited