Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 69,
  • Issue 4,
  • pp. 419-429
  • (2015)

Optical Emission Studies of Copper Plasma Induced Using Infrared Transversely Excited Atmospheric (IR TEA) Carbon Dioxide Laser Pulses

Not Accessible

Your library or personal account may give you access

Abstract

Spatially resolved, time-integrated optical emission spectroscopy was applied for investigation of copper plasma produced by a nanosecond infrared (IR) transversely excited atmospheric (TEA) CO2 laser, operating at 10.6 μm. The effect of surrounding air pressure, in the pressure range 0.1 to 1013 mbar, on plasma formation and its characteristics was investigated. A linear dependence of intensity threshold for plasma formation on logarithm of air pressure was found. Lowering of the air pressure reduces the extent of gas breakdown, enabling better laser-target coupling and thus increases ablation. Optimum air pressure for target plasma formation was 0.1 mbar. Under that pressure, the induced plasma consisted of two clearly distinguished and spatially separated regions. The maximum intensity of emission, with sharp and well-resolved spectral lines and negligibly low background emission, was obtained from a plasma zone 8 mm from the target surface. The estimated excitation temperature in this zone was around 7000 K. The favorable signal to background ratio obtained in this plasma region indicates possible analytical application of TEA CO2 laser produced copper plasma. Detection limits of trace elements present in the Cu sample were on the order of 10 ppm (parts per million). Time-resolved measurements of spatially selected plasma zones were used to find a correlation between the observed spatial position and time delay.

PDF Article
More Like This
Comparative study of Nd:YAG laser-induced breakdown spectroscopy and transversely excited atmospheric CO2 laser-induced gas plasma spectroscopy on chromated copper arsenate preservative-treated wood

Ali Khumaeni, Zener Sukra Lie, Hideaki Niki, Yong Inn Lee, Kazuyoshi Kurihara, Motoomi Wakasugi, Touru Takahashi, and Kiichiro Kagawa
Appl. Opt. 51(7) B121-B129 (2012)

Imaging and emission spectroscopy of the submicrosecond plasma generated from copper substrate with nanosecond laser pulses

Mateusz Tanski, Robert Barbucha, Jerzy Mizeraczyk, and Szymon Tofil
Appl. Opt. 59(27) 8388-8394 (2020)

Comparative study on self-absorption of laser-induced tungsten plasma in air and in argon

Ran Hai, Zhonglin He, Xiao Yu, Liying Sun, Ding Wu, and Hongbin Ding
Opt. Express 27(3) 2509-2520 (2019)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved