OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 1, Iss. 2 — Sep. 1, 2010
  • pp: 431–440

Interlaced spectrally encoded confocal scanning laser ophthalmoscopy and spectral domain optical coherence tomography

Yuankai K. Tao, Sina Farsiu, and Joseph A. Izatt  »View Author Affiliations


Biomedical Optics Express, Vol. 1, Issue 2, pp. 431-440 (2010)
http://dx.doi.org/10.1364/BOE.1.000431


View Full Text Article

Enhanced HTML    Acrobat PDF (4310 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Scanning laser ophthalmoscopy (SLO) and spectral domain optical coherence tomography (SDOCT) have become essential clinical diagnostic tools in ophthalmology by allowing for video-rate noninvasive en face and depth-resolved visualization of retinal structure. Current generation multimodal imaging systems that combine both SLO and OCT as a means of image tracking remain complex in their hardware implementations. Here, we combine a spectrally encoded confocal scanning laser ophthalmoscope (SECSLO) with an ophthalmic SDOCT system. This novel implementation of an interlaced SECSLO-SDOCT system allows for video-rate SLO fundus images to be acquired alternately with high-resolution SDOCT B-scans as a means of image aiming, guidance, and registration as well as motion tracking. The system shares the illumination source, detection system, and scanning optics between both SLO and OCT as a method of providing a simple multimodal ophthalmic imaging system that can readily be implemented as a table-top or hand-held device.

© 2010 OSA

OCIS Codes
(170.1790) Medical optics and biotechnology : Confocal microscopy
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.4460) Medical optics and biotechnology : Ophthalmic optics and devices
(170.4500) Medical optics and biotechnology : Optical coherence tomography
(110.4234) Imaging systems : Multispectral and hyperspectral imaging

ToC Category:
Ophthalmology Applications

History
Original Manuscript: June 7, 2010
Revised Manuscript: July 27, 2010
Manuscript Accepted: July 27, 2010
Published: August 2, 2010

Virtual Issues
Advances in Optical Coherence Tomography, Photoacoustic Imaging, and Microscopy (2010) Biomedical Optics Express

Citation
Yuankai K. Tao, Sina Farsiu, and Joseph A. Izatt, "Interlaced spectrally encoded confocal scanning laser ophthalmoscopy and spectral domain optical coherence tomography," Biomed. Opt. Express 1, 431-440 (2010)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-1-2-431


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. H. Webb and G. W. Hughes, “Scanning laser ophthalmoscope,” IEEE Trans. Biomed. Eng. 28(7), 488–492 (1981). [CrossRef] [PubMed]
  2. R. H. Webb, G. W. Hughes, and F. C. Delori, “Confocal scanning laser ophthalmoscope,” Appl. Opt. 26(8), 1492–1499 (1987). [CrossRef] [PubMed]
  3. R. H. Webb, G. W. Hughes, and O. Pomerantzeff, “Flying spot TV ophthalmoscope,” Appl. Opt. 19(17), 2991–2997 (1980). [CrossRef] [PubMed]
  4. D. X. Hammer, R. D. Ferguson, T. E. Ustun, C. E. Bigelow, N. V. Iftimia, and R. H. Webb, “Line-scanning laser ophthalmoscope,” J. Biomed. Opt. 11(4), 041126 (2006). [CrossRef] [PubMed]
  5. A. G. H. Podoleanu, G. M. Dobre, R. G. Cucu, and R. B. Rosen, “Sequential optical coherence tomography and confocal imaging,” Opt. Lett. 29(4), 364–366 (2004). [CrossRef] [PubMed]
  6. R. B. Rosen, M. Hathaway, J. Rogers, J. Pedro, P. Garcia, G. M. Dobre, and A. G. H. Podoleanu, “Simultaneous OCT/SLO/ICG imaging,” Invest. Ophthalmol. Vis. Sci. 50(2), 851–860 (2008). [CrossRef] [PubMed]
  7. N. V. Iftimia, D. X. Hammer, C. E. Bigelow, T. E. Ustun, A. H. Burbo, J. F. de Boer, and R. D. Ferguson, “Hybrid LSLO/SDOCT retinal imager,” in Proceedings of SPIE (SPIE, 2007), p. 642602.
  8. M. Pircher, R. J. Zawadzki, J. W. Evans, J. S. Werner, and C. K. Hitzenberger, “Simultaneous imaging of human cone mosaic with adaptive optics enhanced scanning laser ophthalmoscopy and high-speed transversal scanning optical coherence tomography,” Opt. Lett. 33(1), 22–24 (2008). [CrossRef] [PubMed]
  9. N. V. Iftimia, D. X. Hammer, C. E. Bigelow, T. E. Ustun, J. F. de Boer, and R. D. Ferguson, “Hybrid retinal imager using line-scanning laser ophthalmoscopy and spectral domain optical coherence tomography,” Opt. Express 14(26), 12909–12914 (2006). [CrossRef] [PubMed]
  10. N. A. Nassif, B. Cense, B. H. Park, M. C. Pierce, S. H. Yun, B. E. Bouma, G. J. Tearney, T. C. Chen, and J. F. de Boer, “In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve,” Opt. Express 12(3), 367–376 (2004). [CrossRef] [PubMed]
  11. M. Wojtkowski, V. J. Srinivasan, T. Ko, J. G. Fujimoto, A. Kowalczyk, and J. Duker, “Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation,” Opt. Express 12(11), 2404–2422 (2004). [CrossRef] [PubMed]
  12. M. Stopa, B. A. Bower, E. Davies, J. A. Izatt, and C. A. Toth, “Correlation of pathologic features in spectral domain optical coherence tomography with conventional retinal studies,” Retina 28(2), 298–308 (2008). [CrossRef] [PubMed]
  13. P. Thévenaz, U. E. Ruttimann, and M. Unser, “A pyramid approach to subpixel registration based on intensity,” IEEE Trans. Image Process. 7(1), 27–41 (1998). [CrossRef] [PubMed]
  14. R. D. Ferguson, D. X. Hammer, L. A. Paunescu, S. Beaton, and J. S. Schuman, “Tracking optical coherence tomography,” Opt. Lett. 29(18), 2139–2141 (2004). [CrossRef] [PubMed]
  15. D. Hammer, R. D. Ferguson, N. Iftimia, T. Ustun, G. Wollstein, H. Ishikawa, M. Gabriele, W. Dilworth, L. Kagemann, and J. Schuman, “Advanced scanning methods with tracking optical coherence tomography,” Opt. Express 13(20), 7937–7947 (2005). [CrossRef] [PubMed]
  16. A. W. Scott, S. Farsiu, L. B. Enyedi, D. K. Wallace, and C. A. Toth, “Imaging the infant retina with a hand-held spectral-domain optical coherence tomography device,” Am. J. Ophthalmol. 147(2), 364–373, e2 (2009). [CrossRef] [PubMed]
  17. A. Vinekar, M. Sivakumar, R. Shetty, P. Mahendradas, N. Krishnan, A. Mallipatna, and K. B. Shetty, “A novel technique using spectral-domain optical coherence tomography (Spectralis, SD-OCT+HRA) to image supine non-anaesthetized infants: utility demonstrated in aggressive posterior retinopathy of prematurity,” Eye (Lond.) 24(2), 379–382 (2010). [CrossRef] [PubMed]
  18. G. J. Tearney, M. Shishkov, and B. E. Bouma, “Spectrally encoded miniature endoscopy,” Opt. Lett. 27(6), 412–414 (2002). [CrossRef] [PubMed]
  19. G. J. Tearney, R. H. Webb, and B. E. Bouma, “Spectrally encoded confocal microscopy,” Opt. Lett. 23(15), 1152–1154 (1998). [CrossRef] [PubMed]
  20. Y. K. Tao and J. A. Izatt, “Spectrally encoded confocal scanning laser ophthalmoscopy,” Opt. Lett. 35(4), 574–576 (2010). [CrossRef] [PubMed]
  21. C. Boudoux, S. H. Yun, W. Y. Oh, W. M. White, N. V. Iftimia, M. Shishkov, B. E. Bouma, and G. J. Tearney, “Rapid wavelength-swept spectrally encoded confocal microscopy,” Opt. Express 13(20), 8214–8221 (2005). [CrossRef] [PubMed]
  22. D. Yelin, B. E. Bouma, N. V. Iftimia, and G. J. Tearney, “Three-dimensional spectrally encoded imaging,” Opt. Lett. 28(23), 2321–2323 (2003). [CrossRef] [PubMed]
  23. D. Yelin, B. E. Bouma, and G. J. Tearney, “Volumetric sub-surface imaging using spectrally encoded endoscopy,” Opt. Express 16(3), 1748–1757 (2008). [CrossRef] [PubMed]
  24. D. Yelin, I. Rizvi, W. M. White, J. T. Motz, T. Hasan, B. E. Bouma, and G. J. Tearney, “Three-dimensional miniature endoscopy,” Nature 443(7113), 765 (2006). [CrossRef] [PubMed]
  25. D. Yelin, W. M. White, J. T. Motz, S. H. Yun, B. E. Bouma, and G. J. Tearney, “Spectral-domain spectrally-encoded endoscopy,” Opt. Express 15(5), 2432–2444 (2007). [CrossRef] [PubMed]
  26. D. Yelin, S. H. Yun, B. E. Bouma, and G. J. Tearney, “Three-dimensional imaging using spectral encoding heterodyne interferometry,” Opt. Lett. 30(14), 1794–1796 (2005). [CrossRef] [PubMed]
  27. M. Merman, A. Abramov, and D. Yelin, “Theoretical analysis of spectrally encoded endoscopy,” Opt. Express 17(26), 24045–24059 (2009). [CrossRef] [PubMed]
  28. T. Wilson, Confocal microscopy (Academic Press, London; San Diego, 1990).
  29. S. Lemire-Renaud, M. Rivard, M. Strupler, D. Morneau, F. Verpillat, X. Daxhelet, N. Godbout, and C. Boudoux, “Double-clad fiber coupler for endoscopy,” Opt. Express 18(10), 9755–9764 (2010). [CrossRef] [PubMed]
  30. D. Yelin, B. E. Bouma, S. H. Yun, and G. J. Tearney, “Double-clad fiber for endoscopy,” Opt. Lett. 29(20), 2408–2410 (2004). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material


» Media 1: AVI (8365 KB)     
» Media 2: AVI (7788 KB)     
» Media 3: AVI (9954 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited