OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 1, Iss. 4 — Nov. 1, 2010
  • pp: 1138–1147

Detection of doxorubicin-induced apoptosis of leukemic T-lymphocytes by laser tweezers Raman spectroscopy

Tobias J. Moritz, Douglas S. Taylor, Denise M. Krol, John Fritch, and James W. Chan  »View Author Affiliations


Biomedical Optics Express, Vol. 1, Issue 4, pp. 1138-1147 (2010)
http://dx.doi.org/10.1364/BOE.1.001138


View Full Text Article

Enhanced HTML    Acrobat PDF (1428 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Laser tweezers Raman spectroscopy (LTRS) was used to acquire the Raman spectra of leukemic T lymphocytes exposed to the chemotherapy drug doxorubicin at different time points over 72 hours. Changes observed in the Raman spectra were dependent on drug exposure time and concentration. The sequence of spectral changes includes an intensity increase in lipid Raman peaks, followed by an intensity increase in DNA Raman peaks, and finally changes in DNA and protein (phenylalanine) Raman vibrations. These Raman signatures are consistent with vesicle formation, cell membrane blebbing, chromatin condensation, and the cytoplasm of dead cells during the different stages of drug-induced apoptosis. These results suggest the potential of LTRS as a real-time single cell tool for monitoring apoptosis, evaluating the efficacy of chemotherapeutic treatments, or pharmaceutical testing.

© 2010 OSA

OCIS Codes
(140.7010) Lasers and laser optics : Laser trapping
(170.1530) Medical optics and biotechnology : Cell analysis
(170.4520) Medical optics and biotechnology : Optical confinement and manipulation
(290.5860) Scattering : Scattering, Raman
(300.6450) Spectroscopy : Spectroscopy, Raman

ToC Category:
Optical Traps, Manipulation, and Tracking

History
Original Manuscript: September 29, 2010
Revised Manuscript: October 6, 2010
Manuscript Accepted: October 7, 2010
Published: October 10, 2010

Citation
Tobias J. Moritz, Douglas S. Taylor, Denise M. Krol, John Fritch, and James W. Chan, "Detection of doxorubicin-induced apoptosis of leukemic T-lymphocytes by laser tweezers Raman spectroscopy," Biomed. Opt. Express 1, 1138-1147 (2010)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-1-4-1138


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. C. Taylor, S. P. Cullen, and S. J. Martin, “Apoptosis: controlled demolition at the cellular level,” Nat. Rev. Mol. Cell Biol. 9(3), 231–241 (2008). [CrossRef] [PubMed]
  2. S. W. Lowe and A. W. Lin, “Apoptosis in cancer,” Carcinogenesis 21(3), 485–495 (2000). [CrossRef] [PubMed]
  3. J. C. Reed, “Dysregulation of apoptosis in cancer,” J. Clin. Oncol. 17(9), 2941–2953 (1999). [PubMed]
  4. J. F. Kerr, C. M. Winterford, and B. V. Harmon, “Apoptosis. Its significance in cancer and cancer therapy,” Cancer 73(8), 2013–2026 (1994). [CrossRef] [PubMed]
  5. T. G. Cotter, “Apoptosis and cancer: the genesis of a research field,” Nat. Rev. Cancer 9(7), 501–507 (2009). [CrossRef] [PubMed]
  6. M. H. Cheok, W. Yang, C. H. Pui, J. R. Downing, C. Cheng, C. W. Naeve, M. V. Relling, and W. E. Evans, “Treatment-specific changes in gene expression discriminate in vivo drug response in human leukemia cells,” Nat. Genet. 34(1), 85–90 (2003). [CrossRef] [PubMed]
  7. R. A. Nagourney, “Ex vivo programmed cell death and the prediction of response to chemotherapy,” Curr. Treat. Options Oncol. 7(2), 103–110 (2006). [CrossRef] [PubMed]
  8. L. Möllgård, U. Tidefelt, B. Sundman-Engberg, C. Löfgren, and C. Paul, “In vitro chemosensitivity testing in acute non lymphocytic leukemia using the bioluminescence ATP assay,” Leuk. Res. 24(5), 445–452 (2000). [CrossRef] [PubMed]
  9. J. M. Sargent and C. G. Taylor, “Appraisal of the MTT assay as a rapid test of chemosensitivity in acute myeloid leukaemia,” Br. J. Cancer 60(2), 206–210 (1989). [PubMed]
  10. F. Buccisano, L. Maurillo, A. Spagnoli, M. I. D. Principe, E. Ceresoli, F. L. Coco, W. Arcese, S. Amadori, and A. Venditti, “Monitoring of minimal residual disease in acute myeloid leukemia,” Curr. Opin. Oncol. 21(6), 582–588 (2009). [CrossRef] [PubMed]
  11. J. Donadieu and C. Hill, “Early response to chemotherapy as a prognostic factor in childhood acute lymphoblastic leukaemia: a methodological review,” Br. J. Haematol. 115(1), 34–45 (2001). [CrossRef] [PubMed]
  12. C. S. Mulvey, C. A. Sherwood, and I. J. Bigio, “Wavelength-dependent backscattering measurements for quantitative real-time monitoring of apoptosis in living cells,” J. Biomed. Opt. 14(6), 064013 (2009). [CrossRef] [PubMed]
  13. J. Chan, S. Fore, S. Wachsmann-Hogiu, and T. Huser, “Raman spectroscopy and microscopy of individual cells and cellular components,” Laser Photonics Rev. 2(5), 325–349 (2008). [CrossRef]
  14. R. Buckmaster, F. Asphahani, M. Thein, J. Xu, and M. Zhang, “Detection of drug-induced cellular changes using confocal Raman spectroscopy on patterned single-cell biosensors,” Analyst (Lond.) 134(7), 1440–1446 (2009). [CrossRef] [PubMed]
  15. H. Yao, Z. Tao, M. Ai, L. Peng, G. Wang, B. He, and Y. Li, “Raman spectroscopic analysis of apoptosis of single human gastric cancer cells,” Vib. Spectrosc. 50(2), 193–197 (2009). [CrossRef]
  16. C. A. Owen, J. Selvakumaran, I. Notingher, G. Jell, L. L. Hench, and M. M. Stevens, “In vitro toxicology evaluation of pharmaceuticals using Raman micro-spectroscopy,” J. Cell. Biochem. 99(1), 178–186 (2006). [CrossRef] [PubMed]
  17. N. Uzunbajakava, A. Lenferink, Y. Kraan, E. Volokhina, G. Vrensen, J. Greve, and C. Otto, “Nonresonant confocal Raman imaging of DNA and protein distribution in apoptotic cells,” Biophys. J. 84(6), 3968–3981 (2003). [CrossRef] [PubMed]
  18. A. Zoladek, F. C. Pascut, P. Patel, and I. Notingher, “Non-invasive time-course imaging of apoptotic cells by confocal Raman micro-spectroscopy,” J. Raman Spectroscopy, n/a-n/a (2010).
  19. J. W. Chan, A. P. Esposito, C. E. Talley, C. W. Hollars, S. M. Lane, and T. Huser, “Reagentless identification of single bacterial spores in aqueous solution by confocal laser tweezers Raman spectroscopy,” Anal. Chem. 76(3), 599–603 (2004). [CrossRef] [PubMed]
  20. C. G. Xie, M. A. Dinno, and Y. Q. Li, “Near-infrared Raman spectroscopy of single optically trapped biological cells,” Opt. Lett. 27(4), 249–251 (2002). [CrossRef] [PubMed]
  21. T. J. Moritz, J. A. Brunberg, D. M. Krol, S. Wachsmann-Hogiu, S. M. Lane, and J. W. Chan, “Characterization of FXTAS related isolated intranuclear protein inclusions using laser tweeezers Raman spectroscopy,” J. Raman Spectroscopy 40(2009).
  22. C. A. Lieber and A. Mahadevan-Jansen, “Automated method for subtraction of fluorescence from biological Raman spectra,” Appl. Spectrosc. 57(11), 1363–1367 (2003). [CrossRef] [PubMed]
  23. I. Notingher, G. Jell, P. L. Notingher, I. Bisson, O. Tsigkou, J. M. Polak, M. M. Stevens, and L. L. Hench, “Multivariate analysis of Raman spectra for in vitro non-invasive studies of living cells,” J. Mol. Struct. 744-747, 179–185 (2005). [CrossRef]
  24. J. W. Chan, D. S. Taylor, T. Zwerdling, S. M. Lane, K. Ihara, and T. Huser, “Micro-Raman spectroscopy detects individual neoplastic and normal hematopoietic cells,” Biophys. J. 90(2), 648–656 (2006). [CrossRef] [PubMed]
  25. M. Niepel, S. L. Spencer, and P. K. Sorger, “Non-genetic cell-to-cell variability and the consequences for pharmacology,” Curr. Opin. Chem. Biol. 13(5-6), 556–561 (2009). [CrossRef] [PubMed]
  26. C. Ferraro-Peyret, L. Quemeneur, M. Flacher, J. P. Revillard, and L. Genestier, “Caspase-independent phosphatidylserine exposure during apoptosis of primary T lymphocytes,” J. Immunol. 169(9), 4805–4810 (2002). [PubMed]
  27. M. L. Coleman, E. A. Sahai, M. Yeo, M. Bosch, A. Dewar, and M. F. Olson, “Membrane blebbing during apoptosis results from caspase-mediated activation of ROCK I,” Nat. Cell Biol. 3(4), 339–345 (2001). [CrossRef] [PubMed]
  28. S. Gamen, A. Anel, P. Lasierra, M. A. Alava, M. J. Martinez-Lorenzo, A. Piñeiro, and J. Naval, “Doxorubicin-induced apoptosis in human T-cell leukemia is mediated by caspase-3 activation in a Fas-independent way,” FEBS Lett. 417(3), 360–364 (1997). [CrossRef] [PubMed]
  29. D. C. Dartsch, A. Schaefer, S. Boldt, W. Kolch, and H. Marquardt, “Comparison of anthracycline-induced death of human leukemia cells: programmed cell death versus necrosis,” Apoptosis 7(6), 537–548 (2002). [CrossRef] [PubMed]
  30. S. Gamen, A. Anel, P. Pérez-Galán, P. Lasierra, D. Johnson, A. Piñeiro, and J. Naval, “Doxorubicin treatment activates a Z-VAD-sensitive caspase, which causes deltapsim loss, caspase-9 activity, and apoptosis in Jurkat cells,” Exp. Cell Res. 258(1), 223–235 (2000). [CrossRef] [PubMed]
  31. S. Wesselborg, I. H. Engels, E. Rossmann, M. Los, and K. Schulze-Osthoff, “Anticancer drugs induce caspase-8/FLICE activation and apoptosis in the absence of CD95 receptor/ligand interaction,” Blood 93(9), 3053–3063 (1999). [PubMed]
  32. A. A. Sokolovskaya, T. N. Zabotina, D. Y. Blokhin, Z. G. Kadagidze, and A. Y. Baryshnikov, “Comparative analysis of apoptosis induced by various anticancer drugs in Jurkat cells,” Exp. Oncol. 23, 46–50 (2001).
  33. G. E. N. Kass, J. E. Eriksson, M. Weis, S. Orrenius, and S. C. Chow, “Chromatin condensation during apoptosis requires ATP,” Biochem. J. 318(Pt 3), 749–752 (1996). [PubMed]
  34. V. L. Johnson, S. C. W. Ko, T. H. Holmstrom, J. E. Eriksson, and S. C. Chow, “Effector caspases are dispensable for the early nuclear morphological changes during chemical-induced apoptosis,” J. Cell Sci. 113(Pt 17), 2941–2953 (2000). [PubMed]
  35. Y. Takai, T. Masuko, and H. Takeuchi, “Lipid structure of cytotoxic granules in living human killer T lymphocytes studied by Raman microspectroscopy,” Biochim. Biophys. Acta 1335(1-2), 199–208 (1997). [PubMed]
  36. J. W. Chan, D. S. Taylor, S. M. Lane, T. Zwerdling, J. Tuscano, and T. Huser, “Nondestructive identification of individual leukemia cells by laser trapping Raman spectroscopy,” Anal. Chem. 80(6), 2180–2187 (2008). [CrossRef] [PubMed]
  37. R. D. Snook, T. J. Harvey, E. Correia Faria, and P. Gardner, “Raman tweezers and their application to the study of singly trapped eukaryotic cells,” Integr Biol (Camb) 1(1), 43–52 (2009). [CrossRef] [PubMed]
  38. G. J. Puppels, J. H. F. Olminkhof, G. M. J. Segers-Nolten, C. Otto, F. F. M. de Mul, and J. Greve, “Laser irradiation and Raman spectroscopy of single living cells and chromosomes: sample degradation occurs with 514.5 nm but not with 660 nm laser light,” Exp. Cell Res. 195(2), 361–367 (1991). [CrossRef] [PubMed]
  39. P. R. T. Jess, V. Garcés-Chávez, D. Smith, M. Mazilu, L. Paterson, A. Riches, C. S. Herrington, W. Sibbett, and K. Dholakia, “Dual beam fibre trap for Raman micro-spectroscopy of single cells,” Opt. Express 14(12), 5779–5791 (2006). [CrossRef] [PubMed]
  40. A. Y. Lau, L. P. Lee, and J. W. Chan, “An integrated optofluidic platform for Raman-activated cell sorting,” Lab Chip 8(7), 1116–1120 (2008). [CrossRef] [PubMed]
  41. K. Ramser, J. Enger, M. Goksör, D. Hanstorp, K. Logg, and M. Käll, “A microfluidic system enabling Raman measurements of the oxygenation cycle in single optically trapped red blood cells,” Lab Chip 5(4), 431–436 (2005). [CrossRef] [PubMed]
  42. K. Ramser, W. Wenseleers, S. Dewilde, S. Van Doorslaer, and L. Moens, “The combination of resonance Raman spectroscopy, optical tweezers and microfluidic systems applied to the study of various heme-containing single cells,” Spectroscopy 22, 287–295 (2008).
  43. K. Ramser, W. Wenseleers, S. Dewilde, S. Van Doorslaer, L. Moens, and D. Hanstorp, “Micro-resonance Raman study of optically trapped Escherichia coli cells overexpressing human neuroglobin,” J. Biomed. Opt. 12(4), 044009 (2007). [CrossRef] [PubMed]
  44. R. Liu, D. S. Taylor, D. L. Matthews, and J. W. Chan, “Parallel analysis of individual biological cells using multifocal laser tweezers Raman spectroscopy,” Appl. Spectrosc. (to be published).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 4
 
Fig. 3 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited