OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 2, Iss. 10 — Oct. 1, 2011
  • pp: 2815–2820

Simultaneous optical measurements of cell motility and growth

Shamira Sridharan, Mustafa Mir, and Gabriel Popescu  »View Author Affiliations


Biomedical Optics Express, Vol. 2, Issue 10, pp. 2815-2820 (2011)
http://dx.doi.org/10.1364/BOE.2.002815


View Full Text Article

Enhanced HTML    Acrobat PDF (1439 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

It has recently been shown that spatial light interference microscopy (SLIM) developed in our laboratory can be used to quantify the dry mass growth of single cells with femtogram sensitivity [M. Mir et al., Proc. Nat. Acad. Sci. 108, 32 (2011)]. Here we show that it is possible to measure the motility of single cells in conjunction with the dry mass measurements. Specifically the effect of poly-L-lysine substrate on the dry mass growth of Drosophila S2 cells is studied. By measuring the mean square displacement of single cells and clusters it is shown that cells that adhere better to the surface are unable to grow. Using such a technique it is possible to measure both growth and morphogenesis, two of the cornerstones of developmental biology.

© 2011 OSA

OCIS Codes
(170.1420) Medical optics and biotechnology : Biology
(170.1530) Medical optics and biotechnology : Cell analysis
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(180.3170) Microscopy : Interference microscopy

ToC Category:
Cell Studies

History
Original Manuscript: July 27, 2011
Revised Manuscript: September 16, 2011
Manuscript Accepted: September 18, 2011
Published: September 22, 2011

Virtual Issues
Advances in Optics for Biotechnology, Medicine, and Surgery (2011) Biomedical Optics Express

Citation
Shamira Sridharan, Mustafa Mir, and Gabriel Popescu, "Simultaneous optical measurements of cell motility and growth," Biomed. Opt. Express 2, 2815-2820 (2011)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-2-10-2815


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. K. Purves, Life, the Science of Biology (Sinauer Associates, W.H. Freeman and Co., Sunderland, Mass., 2004).
  2. S. L. Rogers, U. Wiedemann, N. Stuurman, and R. D. Vale, “Molecular requirements for actin-based lamella formation in Drosophila S2 cells,” J. Cell Biol.162(6), 1079–1088 (2003). [CrossRef] [PubMed]
  3. A. Tzur, R. Kafri, V. S. LeBleu, G. Lahav, and M. W. Kirschner, “Cell growth and size homeostasis in proliferating animal cells,” Science325(5937), 167–171 (2009). [CrossRef] [PubMed]
  4. G. Reshes, S. Vanounou, I. Fishov, and M. Feingold, “Cell shape dynamics in Escherichia coli,” Biophys. J.94(1), 251–264 (2008). [CrossRef] [PubMed]
  5. M. Godin, F. F. Delgado, S. Son, W. H. Grover, A. K. Bryan, A. Tzur, P. Jorgensen, K. Payer, A. D. Grossman, M. W. Kirschner, and S. R. Manalis, “Using buoyant mass to measure the growth of single cells,” Nat. Methods7(5), 387–390 (2010). [CrossRef] [PubMed]
  6. A. K. Bryan, A. Goranov, A. Amon, and S. R. Manalis, “Measurement of mass, density, and volume during the cell cycle of yeast,” Proc. Natl. Acad. Sci. U.S.A.107(3), 999–1004 (2010). [CrossRef] [PubMed]
  7. K. Park, L. J. Millet, N. Kim, H. Li, X. Jin, G. Popescu, N. R. Aluru, K. J. Hsia, and R. Bashir, “Measurement of adherent cell mass and growth,” Proc. Natl. Acad. Sci. U.S.A.107(48), 20691–20696 (2010). [CrossRef] [PubMed]
  8. R. Barer, “Interference microscopy and mass determination,” Nature169(4296), 366–367 (1952). [CrossRef] [PubMed]
  9. B. Rappaz, E. Cano, T. Colomb, J. Kühn, C. Depeursinge, V. Simanis, P. J. Magistretti, and P. Marquet, “Noninvasive characterization of the fission yeast cell cycle by monitoring dry mass with digital holographic microscopy,” J. Biomed. Opt.14(3), 034049 (2009). [CrossRef] [PubMed]
  10. R. J. Sokol, J. Wales, G. Hudson, D. Goldstein, and N. T. James, “Cellular dry mass during macrophage development in malignant lymphoma,” Anal. Quant. Cytol. Histol.13(6), 379–382 (1991). [PubMed]
  11. A. F. Brown and G. A. Dunn, “Microinterferometry of the movement of dry matter in fibroblasts,” J. Cell Sci.92(3), 379–389 (1989). [PubMed]
  12. N. T. Shaked, J. D. Finan, F. Guilak, and A. Wax, “Quantitative phase microscopy of articular chondrocyte dynamics by wide-field digital interferometry,” J. Biomed. Opt.15(1), 010505 (2010). [CrossRef] [PubMed]
  13. R. Barer, “Refractometry and interferometry of living cells,” J. Opt. Soc. Am.47(6), 545–556 (1957). [CrossRef] [PubMed]
  14. R. Barer and K. A. Ross, “Refractometry of living cells,” J. Physiol.118(2), 38P–39P (1952). [PubMed]
  15. R. Barer and S. Tkaczyk, “Refractive index of concentrated protein solutions,” Nature173(4409), 821–822 (1954). [CrossRef] [PubMed]
  16. G. Popescu, Y. Park, N. Lue, C. Best-Popescu, L. Deflores, R. R. Dasari, M. S. Feld, and K. Badizadegan, “Optical imaging of cell mass and growth dynamics,” Am. J. Physiol. Cell Physiol.295(2), C538–C544 (2008). [CrossRef] [PubMed]
  17. Z. Wang, L. Millet, M. Mir, H. Ding, S. Unarunotai, J. Rogers, M. U. Gillette, and G. Popescu, “Spatial light interference microscopy (SLIM),” Opt. Express19(2), 1016–1026 (2011). [CrossRef] [PubMed]
  18. Z. Wang and G. Popescu, “Quantitative phase imaging with broadband fields,” Appl. Phys. Lett.96(5), 051117 (2010). [CrossRef]
  19. M. Mir, Z. Wang, Z. Shen, M. Bednarz, R. Bashir, I. Golding, S. G. Prasanth, and G. Popescu, “Optical measurement of cycle-dependent cell growth,” Proc. Natl. Acad. Sci. U.S.A.108(32), 13124–13129 (2011). [CrossRef] [PubMed]
  20. R. Barer, “Determination of dry mass, thickness, solid and water concentration in living cells,” Nature172(4389), 1097–1098 (1953). [CrossRef] [PubMed]
  21. F. Dubois, C. Schockaert, N. Callens, and C. Yourassowsky, “Focus plane detection criteria in digital holography microscopy by amplitude analysis,” Opt. Express14(13), 5895–5908 (2006). [CrossRef] [PubMed]
  22. A. Eldar and M. B. Elowitz, “Functional roles for noise in genetic circuits,” Nature467(7312), 167–173 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited